MakeItFrom.com
Menu (ESC)

6023 Aluminum vs. S20161 Stainless Steel

6023 aluminum belongs to the aluminum alloys classification, while S20161 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 6023 aluminum and the bottom bar is S20161 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
190
Elongation at Break, % 11
46
Fatigue Strength, MPa 120 to 130
360
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
76
Shear Strength, MPa 210 to 220
690
Tensile Strength: Ultimate (UTS), MPa 360
980
Tensile Strength: Yield (Proof), MPa 300 to 310
390

Thermal Properties

Latent Heat of Fusion, J/g 400
330
Maximum Temperature: Mechanical, °C 160
870
Melting Completion (Liquidus), °C 640
1380
Melting Onset (Solidus), °C 580
1330
Specific Heat Capacity, J/kg-K 890
490
Thermal Conductivity, W/m-K 170
15
Thermal Expansion, µm/m-K 23
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 45
2.5
Electrical Conductivity: Equal Weight (Specific), % IACS 140
2.9

Otherwise Unclassified Properties

Base Metal Price, % relative 11
12
Density, g/cm3 2.8
7.5
Embodied Carbon, kg CO2/kg material 8.3
2.7
Embodied Energy, MJ/kg 150
39
Embodied Water, L/kg 1180
130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 38 to 39
360
Resilience: Unit (Modulus of Resilience), kJ/m3 670 to 690
390
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 49
26
Strength to Weight: Axial, points 35 to 36
36
Strength to Weight: Bending, points 40
29
Thermal Diffusivity, mm2/s 67
4.0
Thermal Shock Resistance, points 16
22

Alloy Composition

Aluminum (Al), % 94 to 97.7
0
Bismuth (Bi), % 0.3 to 0.8
0
Carbon (C), % 0
0 to 0.15
Chromium (Cr), % 0
15 to 18
Copper (Cu), % 0.2 to 0.5
0
Iron (Fe), % 0 to 0.5
65.6 to 73.9
Magnesium (Mg), % 0.4 to 0.9
0
Manganese (Mn), % 0.2 to 0.6
4.0 to 6.0
Nickel (Ni), % 0
4.0 to 6.0
Nitrogen (N), % 0
0.080 to 0.2
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0.6 to 1.4
3.0 to 4.0
Sulfur (S), % 0
0 to 0.040
Tin (Sn), % 0.6 to 1.2
0
Residuals, % 0 to 0.15
0