MakeItFrom.com
Menu (ESC)

6023 Aluminum vs. S40920 Stainless Steel

6023 aluminum belongs to the aluminum alloys classification, while S40920 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 6023 aluminum and the bottom bar is S40920 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
190
Elongation at Break, % 11
22
Fatigue Strength, MPa 120 to 130
130
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
75
Shear Strength, MPa 210 to 220
270
Tensile Strength: Ultimate (UTS), MPa 360
430
Tensile Strength: Yield (Proof), MPa 300 to 310
190

Thermal Properties

Latent Heat of Fusion, J/g 400
270
Maximum Temperature: Mechanical, °C 160
710
Melting Completion (Liquidus), °C 640
1450
Melting Onset (Solidus), °C 580
1400
Specific Heat Capacity, J/kg-K 890
480
Thermal Conductivity, W/m-K 170
26
Thermal Expansion, µm/m-K 23
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 45
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 140
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 11
6.5
Density, g/cm3 2.8
7.7
Embodied Carbon, kg CO2/kg material 8.3
2.0
Embodied Energy, MJ/kg 150
28
Embodied Water, L/kg 1180
94

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 38 to 39
78
Resilience: Unit (Modulus of Resilience), kJ/m3 670 to 690
97
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 49
25
Strength to Weight: Axial, points 35 to 36
15
Strength to Weight: Bending, points 40
16
Thermal Diffusivity, mm2/s 67
6.9
Thermal Shock Resistance, points 16
15

Alloy Composition

Aluminum (Al), % 94 to 97.7
0
Bismuth (Bi), % 0.3 to 0.8
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
10.5 to 11.7
Copper (Cu), % 0.2 to 0.5
0
Iron (Fe), % 0 to 0.5
85.1 to 89.4
Magnesium (Mg), % 0.4 to 0.9
0
Manganese (Mn), % 0.2 to 0.6
0 to 1.0
Nickel (Ni), % 0
0 to 0.5
Niobium (Nb), % 0
0 to 0.1
Nitrogen (N), % 0
0 to 0.030
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0.6 to 1.4
0 to 1.0
Sulfur (S), % 0
0 to 0.020
Tin (Sn), % 0.6 to 1.2
0
Titanium (Ti), % 0
0.15 to 0.5
Residuals, % 0 to 0.15
0