MakeItFrom.com
Menu (ESC)

6025 Aluminum vs. A444.0 Aluminum

Both 6025 aluminum and A444.0 aluminum are aluminum alloys. They have a moderately high 94% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is 6025 aluminum and the bottom bar is A444.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
70
Elongation at Break, % 2.8 to 10
18
Fatigue Strength, MPa 67 to 110
37
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 26
26
Tensile Strength: Ultimate (UTS), MPa 190 to 240
160
Tensile Strength: Yield (Proof), MPa 68 to 210
66

Thermal Properties

Latent Heat of Fusion, J/g 410
500
Maximum Temperature: Mechanical, °C 160
170
Melting Completion (Liquidus), °C 650
630
Melting Onset (Solidus), °C 550
590
Specific Heat Capacity, J/kg-K 900
900
Thermal Conductivity, W/m-K 130
160
Thermal Expansion, µm/m-K 23
22

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 33
41
Electrical Conductivity: Equal Weight (Specific), % IACS 110
140

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
9.5
Density, g/cm3 2.8
2.6
Embodied Carbon, kg CO2/kg material 8.5
7.9
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1160
1110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 6.0 to 15
24
Resilience: Unit (Modulus of Resilience), kJ/m3 33 to 310
31
Stiffness to Weight: Axial, points 14
15
Stiffness to Weight: Bending, points 50
53
Strength to Weight: Axial, points 19 to 24
17
Strength to Weight: Bending, points 26 to 31
25
Thermal Diffusivity, mm2/s 54
68
Thermal Shock Resistance, points 8.2 to 10
7.3

Alloy Composition

Aluminum (Al), % 91.7 to 96.3
91.6 to 93.5
Chromium (Cr), % 0 to 0.2
0
Copper (Cu), % 0.2 to 0.7
0 to 0.1
Iron (Fe), % 0 to 0.7
0 to 0.2
Magnesium (Mg), % 2.1 to 3.0
0 to 0.050
Manganese (Mn), % 0.6 to 1.4
0 to 0.1
Silicon (Si), % 0.8 to 1.5
6.5 to 7.5
Titanium (Ti), % 0 to 0.2
0 to 0.2
Zinc (Zn), % 0 to 0.5
0 to 0.1
Residuals, % 0
0 to 0.15