MakeItFrom.com
Menu (ESC)

6025 Aluminum vs. EN 1.1221 Steel

6025 aluminum belongs to the aluminum alloys classification, while EN 1.1221 steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 6025 aluminum and the bottom bar is EN 1.1221 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
190
Elongation at Break, % 2.8 to 10
10 to 21
Fatigue Strength, MPa 67 to 110
240 to 340
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
72
Shear Strength, MPa 110 to 140
450 to 520
Tensile Strength: Ultimate (UTS), MPa 190 to 240
730 to 870
Tensile Strength: Yield (Proof), MPa 68 to 210
390 to 550

Thermal Properties

Latent Heat of Fusion, J/g 410
250
Maximum Temperature: Mechanical, °C 160
400
Melting Completion (Liquidus), °C 650
1460
Melting Onset (Solidus), °C 550
1410
Specific Heat Capacity, J/kg-K 900
470
Thermal Conductivity, W/m-K 130
48
Thermal Expansion, µm/m-K 23
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 33
7.2
Electrical Conductivity: Equal Weight (Specific), % IACS 110
8.3

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
2.1
Density, g/cm3 2.8
7.8
Embodied Carbon, kg CO2/kg material 8.5
1.5
Embodied Energy, MJ/kg 150
19
Embodied Water, L/kg 1160
47

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 6.0 to 15
67 to 130
Resilience: Unit (Modulus of Resilience), kJ/m3 33 to 310
410 to 800
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 50
24
Strength to Weight: Axial, points 19 to 24
26 to 31
Strength to Weight: Bending, points 26 to 31
23 to 26
Thermal Diffusivity, mm2/s 54
13
Thermal Shock Resistance, points 8.2 to 10
23 to 28

Alloy Composition

Aluminum (Al), % 91.7 to 96.3
0
Carbon (C), % 0
0.57 to 0.65
Chromium (Cr), % 0 to 0.2
0 to 0.4
Copper (Cu), % 0.2 to 0.7
0
Iron (Fe), % 0 to 0.7
97.1 to 98.8
Magnesium (Mg), % 2.1 to 3.0
0
Manganese (Mn), % 0.6 to 1.4
0.6 to 0.9
Molybdenum (Mo), % 0
0 to 0.1
Nickel (Ni), % 0
0 to 0.4
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 0.8 to 1.5
0 to 0.4
Sulfur (S), % 0
0 to 0.035
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 0 to 0.5
0
Residuals, % 0 to 0.15
0

Comparable Variants