MakeItFrom.com
Menu (ESC)

6025 Aluminum vs. EN 1.3967 Stainless Steel

6025 aluminum belongs to the aluminum alloys classification, while EN 1.3967 stainless steel belongs to the iron alloys. There are 25 material properties with values for both materials. Properties with values for just one material (9, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 6025 aluminum and the bottom bar is EN 1.3967 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
200
Elongation at Break, % 2.8 to 10
22
Fatigue Strength, MPa 67 to 110
240
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
79
Tensile Strength: Ultimate (UTS), MPa 190 to 240
690
Tensile Strength: Yield (Proof), MPa 68 to 210
350

Thermal Properties

Latent Heat of Fusion, J/g 410
300
Maximum Temperature: Mechanical, °C 160
1070
Melting Completion (Liquidus), °C 650
1430
Melting Onset (Solidus), °C 550
1380
Specific Heat Capacity, J/kg-K 900
470
Thermal Expansion, µm/m-K 23
16

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
25
Density, g/cm3 2.8
7.9
Embodied Carbon, kg CO2/kg material 8.5
4.8
Embodied Energy, MJ/kg 150
66
Embodied Water, L/kg 1160
180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 6.0 to 15
130
Resilience: Unit (Modulus of Resilience), kJ/m3 33 to 310
310
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
25
Strength to Weight: Axial, points 19 to 24
24
Strength to Weight: Bending, points 26 to 31
22
Thermal Shock Resistance, points 8.2 to 10
15

Alloy Composition

Aluminum (Al), % 91.7 to 96.3
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0 to 0.2
20 to 21.5
Copper (Cu), % 0.2 to 0.7
0
Iron (Fe), % 0 to 0.7
50.3 to 57.8
Magnesium (Mg), % 2.1 to 3.0
0
Manganese (Mn), % 0.6 to 1.4
4.0 to 6.0
Molybdenum (Mo), % 0
3.0 to 3.5
Nickel (Ni), % 0
15 to 17
Niobium (Nb), % 0
0 to 0.25
Nitrogen (N), % 0
0.2 to 0.35
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0.8 to 1.5
0 to 1.0
Sulfur (S), % 0
0 to 0.010
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 0 to 0.5
0
Residuals, % 0 to 0.15
0