MakeItFrom.com
Menu (ESC)

6025 Aluminum vs. EN 1.4877 Stainless Steel

6025 aluminum belongs to the aluminum alloys classification, while EN 1.4877 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 6025 aluminum and the bottom bar is EN 1.4877 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
200
Elongation at Break, % 2.8 to 10
36
Fatigue Strength, MPa 67 to 110
170
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
79
Shear Strength, MPa 110 to 140
420
Tensile Strength: Ultimate (UTS), MPa 190 to 240
630
Tensile Strength: Yield (Proof), MPa 68 to 210
200

Thermal Properties

Latent Heat of Fusion, J/g 410
310
Maximum Temperature: Mechanical, °C 160
1150
Melting Completion (Liquidus), °C 650
1400
Melting Onset (Solidus), °C 550
1360
Specific Heat Capacity, J/kg-K 900
470
Thermal Conductivity, W/m-K 130
12
Thermal Expansion, µm/m-K 23
15

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 33
1.8
Electrical Conductivity: Equal Weight (Specific), % IACS 110
2.0

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
37
Density, g/cm3 2.8
8.0
Embodied Carbon, kg CO2/kg material 8.5
6.2
Embodied Energy, MJ/kg 150
89
Embodied Water, L/kg 1160
220

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 6.0 to 15
180
Resilience: Unit (Modulus of Resilience), kJ/m3 33 to 310
100
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
24
Strength to Weight: Axial, points 19 to 24
22
Strength to Weight: Bending, points 26 to 31
20
Thermal Diffusivity, mm2/s 54
3.2
Thermal Shock Resistance, points 8.2 to 10
15

Alloy Composition

Aluminum (Al), % 91.7 to 96.3
0 to 0.025
Carbon (C), % 0
0.040 to 0.080
Cerium (Ce), % 0
0.050 to 0.1
Chromium (Cr), % 0 to 0.2
26 to 28
Copper (Cu), % 0.2 to 0.7
0
Iron (Fe), % 0 to 0.7
36.4 to 42.3
Magnesium (Mg), % 2.1 to 3.0
0
Manganese (Mn), % 0.6 to 1.4
0 to 1.0
Nickel (Ni), % 0
31 to 33
Niobium (Nb), % 0
0.6 to 1.0
Nitrogen (N), % 0
0 to 0.1
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 0.8 to 1.5
0 to 0.3
Sulfur (S), % 0
0 to 0.010
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 0 to 0.5
0
Residuals, % 0 to 0.15
0