MakeItFrom.com
Menu (ESC)

6025 Aluminum vs. Nickel 333

6025 aluminum belongs to the aluminum alloys classification, while nickel 333 belongs to the nickel alloys. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 6025 aluminum and the bottom bar is nickel 333.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
210
Elongation at Break, % 2.8 to 10
34
Fatigue Strength, MPa 67 to 110
200
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
81
Shear Strength, MPa 110 to 140
420
Tensile Strength: Ultimate (UTS), MPa 190 to 240
630
Tensile Strength: Yield (Proof), MPa 68 to 210
270

Thermal Properties

Latent Heat of Fusion, J/g 410
320
Maximum Temperature: Mechanical, °C 160
1010
Melting Completion (Liquidus), °C 650
1460
Melting Onset (Solidus), °C 550
1410
Specific Heat Capacity, J/kg-K 900
450
Thermal Conductivity, W/m-K 130
11
Thermal Expansion, µm/m-K 23
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 33
1.5
Electrical Conductivity: Equal Weight (Specific), % IACS 110
1.6

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
55
Density, g/cm3 2.8
8.5
Embodied Carbon, kg CO2/kg material 8.5
8.5
Embodied Energy, MJ/kg 150
120
Embodied Water, L/kg 1160
270

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 6.0 to 15
170
Resilience: Unit (Modulus of Resilience), kJ/m3 33 to 310
180
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
23
Strength to Weight: Axial, points 19 to 24
21
Strength to Weight: Bending, points 26 to 31
19
Thermal Diffusivity, mm2/s 54
2.9
Thermal Shock Resistance, points 8.2 to 10
16

Alloy Composition

Aluminum (Al), % 91.7 to 96.3
0
Carbon (C), % 0
0 to 0.1
Chromium (Cr), % 0 to 0.2
24 to 27
Cobalt (Co), % 0
2.5 to 4.0
Copper (Cu), % 0.2 to 0.7
0
Iron (Fe), % 0 to 0.7
9.3 to 24.5
Magnesium (Mg), % 2.1 to 3.0
0
Manganese (Mn), % 0.6 to 1.4
0 to 2.0
Molybdenum (Mo), % 0
2.5 to 4.0
Nickel (Ni), % 0
44 to 48
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0.8 to 1.5
0 to 1.5
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.2
0
Tungsten (W), % 0
2.5 to 4.0
Zinc (Zn), % 0 to 0.5
0
Residuals, % 0 to 0.15
0