MakeItFrom.com
Menu (ESC)

6025 Aluminum vs. SAE-AISI 1070 Steel

6025 aluminum belongs to the aluminum alloys classification, while SAE-AISI 1070 steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 6025 aluminum and the bottom bar is SAE-AISI 1070 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
190
Elongation at Break, % 2.8 to 10
10 to 13
Fatigue Strength, MPa 67 to 110
270 to 350
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
72
Shear Strength, MPa 110 to 140
380 to 460
Tensile Strength: Ultimate (UTS), MPa 190 to 240
640 to 760
Tensile Strength: Yield (Proof), MPa 68 to 210
420 to 560

Thermal Properties

Latent Heat of Fusion, J/g 410
250
Maximum Temperature: Mechanical, °C 160
400
Melting Completion (Liquidus), °C 650
1460
Melting Onset (Solidus), °C 550
1420
Specific Heat Capacity, J/kg-K 900
470
Thermal Conductivity, W/m-K 130
50
Thermal Expansion, µm/m-K 23
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 33
10
Electrical Conductivity: Equal Weight (Specific), % IACS 110
12

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
1.8
Density, g/cm3 2.8
7.8
Embodied Carbon, kg CO2/kg material 8.5
1.4
Embodied Energy, MJ/kg 150
19
Embodied Water, L/kg 1160
46

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 6.0 to 15
59 to 86
Resilience: Unit (Modulus of Resilience), kJ/m3 33 to 310
470 to 850
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 50
24
Strength to Weight: Axial, points 19 to 24
23 to 27
Strength to Weight: Bending, points 26 to 31
21 to 24
Thermal Diffusivity, mm2/s 54
14
Thermal Shock Resistance, points 8.2 to 10
21 to 25

Alloy Composition

Aluminum (Al), % 91.7 to 96.3
0
Carbon (C), % 0
0.65 to 0.75
Chromium (Cr), % 0 to 0.2
0
Copper (Cu), % 0.2 to 0.7
0
Iron (Fe), % 0 to 0.7
98.3 to 98.8
Magnesium (Mg), % 2.1 to 3.0
0
Manganese (Mn), % 0.6 to 1.4
0.6 to 0.9
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0.8 to 1.5
0
Sulfur (S), % 0
0 to 0.050
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 0 to 0.5
0
Residuals, % 0 to 0.15
0