MakeItFrom.com
Menu (ESC)

6025 Aluminum vs. SAE-AISI D3 Steel

6025 aluminum belongs to the aluminum alloys classification, while SAE-AISI D3 steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 6025 aluminum and the bottom bar is SAE-AISI D3 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
190
Elongation at Break, % 2.8 to 10
9.8 to 15
Fatigue Strength, MPa 67 to 110
310 to 940
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
74
Shear Strength, MPa 110 to 140
470 to 1220
Tensile Strength: Ultimate (UTS), MPa 190 to 240
770 to 2050
Tensile Strength: Yield (Proof), MPa 68 to 210
480 to 1550

Thermal Properties

Latent Heat of Fusion, J/g 410
270
Melting Completion (Liquidus), °C 650
1430
Melting Onset (Solidus), °C 550
1390
Specific Heat Capacity, J/kg-K 900
480
Thermal Conductivity, W/m-K 130
31
Thermal Expansion, µm/m-K 23
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 33
3.0
Electrical Conductivity: Equal Weight (Specific), % IACS 110
3.5

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
8.0
Density, g/cm3 2.8
7.7
Embodied Carbon, kg CO2/kg material 8.5
3.2
Embodied Energy, MJ/kg 150
48
Embodied Water, L/kg 1160
100

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 6.0 to 15
97 to 180
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
25
Strength to Weight: Axial, points 19 to 24
28 to 74
Strength to Weight: Bending, points 26 to 31
24 to 47
Thermal Diffusivity, mm2/s 54
8.3
Thermal Shock Resistance, points 8.2 to 10
23 to 63

Alloy Composition

Aluminum (Al), % 91.7 to 96.3
0
Carbon (C), % 0
2.0 to 2.4
Chromium (Cr), % 0 to 0.2
11 to 13.5
Copper (Cu), % 0.2 to 0.7
0 to 0.25
Iron (Fe), % 0 to 0.7
80.3 to 87
Magnesium (Mg), % 2.1 to 3.0
0
Manganese (Mn), % 0.6 to 1.4
0 to 0.6
Nickel (Ni), % 0
0 to 0.3
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0.8 to 1.5
0 to 0.6
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.2
0
Tungsten (W), % 0
0 to 1.0
Vanadium (V), % 0
0 to 1.0
Zinc (Zn), % 0 to 0.5
0
Residuals, % 0 to 0.15
0

Comparable Variants