MakeItFrom.com
Menu (ESC)

6025 Aluminum vs. N07716 Nickel

6025 aluminum belongs to the aluminum alloys classification, while N07716 nickel belongs to the nickel alloys. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 6025 aluminum and the bottom bar is N07716 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
200
Elongation at Break, % 2.8 to 10
34
Fatigue Strength, MPa 67 to 110
690
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
78
Shear Strength, MPa 110 to 140
580
Tensile Strength: Ultimate (UTS), MPa 190 to 240
860
Tensile Strength: Yield (Proof), MPa 68 to 210
350

Thermal Properties

Latent Heat of Fusion, J/g 410
320
Maximum Temperature: Mechanical, °C 160
980
Melting Completion (Liquidus), °C 650
1480
Melting Onset (Solidus), °C 550
1430
Specific Heat Capacity, J/kg-K 900
440
Thermal Conductivity, W/m-K 130
11
Thermal Expansion, µm/m-K 23
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 33
1.4
Electrical Conductivity: Equal Weight (Specific), % IACS 110
1.5

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
75
Density, g/cm3 2.8
8.5
Embodied Carbon, kg CO2/kg material 8.5
13
Embodied Energy, MJ/kg 150
190
Embodied Water, L/kg 1160
280

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 6.0 to 15
240
Resilience: Unit (Modulus of Resilience), kJ/m3 33 to 310
300
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 50
23
Strength to Weight: Axial, points 19 to 24
28
Strength to Weight: Bending, points 26 to 31
24
Thermal Diffusivity, mm2/s 54
2.8
Thermal Shock Resistance, points 8.2 to 10
24

Alloy Composition

Aluminum (Al), % 91.7 to 96.3
0 to 0.35
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0 to 0.2
19 to 22
Copper (Cu), % 0.2 to 0.7
0
Iron (Fe), % 0 to 0.7
0 to 11.3
Magnesium (Mg), % 2.1 to 3.0
0
Manganese (Mn), % 0.6 to 1.4
0 to 0.2
Molybdenum (Mo), % 0
7.0 to 9.5
Nickel (Ni), % 0
59 to 63
Niobium (Nb), % 0
2.8 to 4.0
Phosphorus (P), % 0
0 to 0.015
Silicon (Si), % 0.8 to 1.5
0 to 0.2
Sulfur (S), % 0
0 to 0.010
Titanium (Ti), % 0 to 0.2
1.0 to 1.6
Zinc (Zn), % 0 to 0.5
0
Residuals, % 0 to 0.15
0