MakeItFrom.com
Menu (ESC)

6060 Aluminum vs. AISI 316L Stainless Steel

6060 aluminum belongs to the aluminum alloys classification, while AISI 316L stainless steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 6060 aluminum and the bottom bar is AISI 316L stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
200
Elongation at Break, % 9.0 to 16
9.0 to 50
Fatigue Strength, MPa 37 to 70
170 to 450
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
78
Shear Strength, MPa 86 to 130
370 to 690
Tensile Strength: Ultimate (UTS), MPa 140 to 220
530 to 1160
Tensile Strength: Yield (Proof), MPa 71 to 170
190 to 870

Thermal Properties

Latent Heat of Fusion, J/g 400
290
Maximum Temperature: Mechanical, °C 160
870
Melting Completion (Liquidus), °C 660
1400
Melting Onset (Solidus), °C 610
1380
Specific Heat Capacity, J/kg-K 900
470
Thermal Conductivity, W/m-K 210
15
Thermal Expansion, µm/m-K 23
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 54
2.3
Electrical Conductivity: Equal Weight (Specific), % IACS 180
2.6

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
19
Calomel Potential, mV -710
-50
Density, g/cm3 2.7
7.9
Embodied Carbon, kg CO2/kg material 8.3
3.9
Embodied Energy, MJ/kg 150
53
Embodied Water, L/kg 1190
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 13 to 24
77 to 230
Resilience: Unit (Modulus of Resilience), kJ/m3 37 to 210
93 to 1880
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
25
Strength to Weight: Axial, points 14 to 23
19 to 41
Strength to Weight: Bending, points 22 to 30
18 to 31
Thermal Diffusivity, mm2/s 85
4.1
Thermal Shock Resistance, points 6.3 to 9.9
12 to 25

Alloy Composition

Aluminum (Al), % 97.9 to 99.3
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0 to 0.050
16 to 18
Copper (Cu), % 0 to 0.1
0
Iron (Fe), % 0.1 to 0.3
62 to 72
Magnesium (Mg), % 0.35 to 0.6
0
Manganese (Mn), % 0 to 0.1
0 to 2.0
Molybdenum (Mo), % 0
2.0 to 3.0
Nickel (Ni), % 0
10 to 14
Nitrogen (N), % 0
0 to 0.1
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0.3 to 0.6
0 to 0.75
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.1
0
Zinc (Zn), % 0 to 0.15
0
Residuals, % 0 to 0.15
0