MakeItFrom.com
Menu (ESC)

6060 Aluminum vs. EN 2.4608 Nickel

6060 aluminum belongs to the aluminum alloys classification, while EN 2.4608 nickel belongs to the nickel alloys. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 6060 aluminum and the bottom bar is EN 2.4608 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
210
Elongation at Break, % 9.0 to 16
34
Fatigue Strength, MPa 37 to 70
200
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
81
Shear Strength, MPa 86 to 130
410
Tensile Strength: Ultimate (UTS), MPa 140 to 220
620
Tensile Strength: Yield (Proof), MPa 71 to 170
270

Thermal Properties

Latent Heat of Fusion, J/g 400
330
Maximum Temperature: Mechanical, °C 160
1000
Melting Completion (Liquidus), °C 660
1460
Melting Onset (Solidus), °C 610
1410
Specific Heat Capacity, J/kg-K 900
460
Thermal Conductivity, W/m-K 210
11
Thermal Expansion, µm/m-K 23
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 54
1.5
Electrical Conductivity: Equal Weight (Specific), % IACS 180
1.6

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
55
Density, g/cm3 2.7
8.5
Embodied Carbon, kg CO2/kg material 8.3
8.4
Embodied Energy, MJ/kg 150
120
Embodied Water, L/kg 1190
270

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 13 to 24
170
Resilience: Unit (Modulus of Resilience), kJ/m3 37 to 210
180
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
23
Strength to Weight: Axial, points 14 to 23
20
Strength to Weight: Bending, points 22 to 30
19
Thermal Diffusivity, mm2/s 85
2.9
Thermal Shock Resistance, points 6.3 to 9.9
16

Alloy Composition

Aluminum (Al), % 97.9 to 99.3
0
Carbon (C), % 0
0.030 to 0.080
Chromium (Cr), % 0 to 0.050
24 to 26
Cobalt (Co), % 0
2.5 to 4.0
Copper (Cu), % 0 to 0.1
0
Iron (Fe), % 0.1 to 0.3
11.4 to 23.8
Magnesium (Mg), % 0.35 to 0.6
0
Manganese (Mn), % 0 to 0.1
0 to 2.0
Molybdenum (Mo), % 0
2.5 to 4.0
Nickel (Ni), % 0
44 to 47
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0.3 to 0.6
0.7 to 1.5
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 0 to 0.1
0
Tungsten (W), % 0
2.5 to 4.0
Zinc (Zn), % 0 to 0.15
0
Residuals, % 0 to 0.15
0