MakeItFrom.com
Menu (ESC)

6060 Aluminum vs. N06045 Nickel

6060 aluminum belongs to the aluminum alloys classification, while N06045 nickel belongs to the nickel alloys. There are 26 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 6060 aluminum and the bottom bar is N06045 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
200
Elongation at Break, % 9.0 to 16
37
Fatigue Strength, MPa 37 to 70
210
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
77
Shear Strength, MPa 86 to 130
470
Tensile Strength: Ultimate (UTS), MPa 140 to 220
690
Tensile Strength: Yield (Proof), MPa 71 to 170
270

Thermal Properties

Latent Heat of Fusion, J/g 400
350
Maximum Temperature: Mechanical, °C 160
1010
Melting Completion (Liquidus), °C 660
1350
Melting Onset (Solidus), °C 610
1300
Specific Heat Capacity, J/kg-K 900
480
Thermal Expansion, µm/m-K 23
13

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
42
Density, g/cm3 2.7
8.0
Embodied Carbon, kg CO2/kg material 8.3
6.9
Embodied Energy, MJ/kg 150
98
Embodied Water, L/kg 1190
250

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 13 to 24
200
Resilience: Unit (Modulus of Resilience), kJ/m3 37 to 210
180
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
24
Strength to Weight: Axial, points 14 to 23
24
Strength to Weight: Bending, points 22 to 30
22
Thermal Shock Resistance, points 6.3 to 9.9
18

Alloy Composition

Aluminum (Al), % 97.9 to 99.3
0
Carbon (C), % 0
0.050 to 0.12
Cerium (Ce), % 0
0.030 to 0.090
Chromium (Cr), % 0 to 0.050
26 to 29
Copper (Cu), % 0 to 0.1
0 to 0.3
Iron (Fe), % 0.1 to 0.3
21 to 25
Magnesium (Mg), % 0.35 to 0.6
0
Manganese (Mn), % 0 to 0.1
0 to 1.0
Nickel (Ni), % 0
45 to 50.4
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 0.3 to 0.6
2.5 to 3.0
Sulfur (S), % 0
0 to 0.010
Titanium (Ti), % 0 to 0.1
0
Zinc (Zn), % 0 to 0.15
0
Residuals, % 0 to 0.15
0