MakeItFrom.com
Menu (ESC)

6060 Aluminum vs. R30075 Cobalt

6060 aluminum belongs to the aluminum alloys classification, while R30075 cobalt belongs to the cobalt alloys. There are 27 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 6060 aluminum and the bottom bar is R30075 cobalt.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
210 to 250
Elongation at Break, % 9.0 to 16
12
Fatigue Strength, MPa 37 to 70
250 to 840
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
82 to 98
Tensile Strength: Ultimate (UTS), MPa 140 to 220
780 to 1280
Tensile Strength: Yield (Proof), MPa 71 to 170
480 to 840

Thermal Properties

Latent Heat of Fusion, J/g 400
320
Melting Completion (Liquidus), °C 660
1360
Melting Onset (Solidus), °C 610
1290
Specific Heat Capacity, J/kg-K 900
450
Thermal Conductivity, W/m-K 210
13
Thermal Expansion, µm/m-K 23
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 54
2.0
Electrical Conductivity: Equal Weight (Specific), % IACS 180
2.1

Otherwise Unclassified Properties

Density, g/cm3 2.7
8.4
Embodied Carbon, kg CO2/kg material 8.3
8.1
Embodied Energy, MJ/kg 150
110
Embodied Water, L/kg 1190
530

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 13 to 24
84 to 140
Resilience: Unit (Modulus of Resilience), kJ/m3 37 to 210
560 to 1410
Stiffness to Weight: Axial, points 14
14 to 17
Stiffness to Weight: Bending, points 50
24 to 25
Strength to Weight: Axial, points 14 to 23
26 to 42
Strength to Weight: Bending, points 22 to 30
22 to 31
Thermal Diffusivity, mm2/s 85
3.5
Thermal Shock Resistance, points 6.3 to 9.9
21 to 29

Alloy Composition

Aluminum (Al), % 97.9 to 99.3
0 to 0.1
Boron (B), % 0
0 to 0.010
Carbon (C), % 0
0 to 0.35
Chromium (Cr), % 0 to 0.050
27 to 30
Cobalt (Co), % 0
58.7 to 68
Copper (Cu), % 0 to 0.1
0
Iron (Fe), % 0.1 to 0.3
0 to 0.75
Magnesium (Mg), % 0.35 to 0.6
0
Manganese (Mn), % 0 to 0.1
0 to 1.0
Molybdenum (Mo), % 0
5.0 to 7.0
Nickel (Ni), % 0
0 to 0.5
Nitrogen (N), % 0
0 to 0.25
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 0.3 to 0.6
0 to 1.0
Sulfur (S), % 0
0 to 0.010
Titanium (Ti), % 0 to 0.1
0 to 0.1
Tungsten (W), % 0
0 to 0.2
Zinc (Zn), % 0 to 0.15
0
Residuals, % 0 to 0.15
0