MakeItFrom.com
Menu (ESC)

6060 Aluminum vs. S17700 Stainless Steel

6060 aluminum belongs to the aluminum alloys classification, while S17700 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 6060 aluminum and the bottom bar is S17700 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
200
Elongation at Break, % 9.0 to 16
1.0 to 23
Fatigue Strength, MPa 37 to 70
290 to 560
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
76
Shear Strength, MPa 86 to 130
740 to 940
Tensile Strength: Ultimate (UTS), MPa 140 to 220
1180 to 1650
Tensile Strength: Yield (Proof), MPa 71 to 170
430 to 1210

Thermal Properties

Latent Heat of Fusion, J/g 400
290
Maximum Temperature: Mechanical, °C 160
890
Melting Completion (Liquidus), °C 660
1440
Melting Onset (Solidus), °C 610
1400
Specific Heat Capacity, J/kg-K 900
480
Thermal Conductivity, W/m-K 210
15
Thermal Expansion, µm/m-K 23
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 54
2.3
Electrical Conductivity: Equal Weight (Specific), % IACS 180
2.7

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
13
Density, g/cm3 2.7
7.7
Embodied Carbon, kg CO2/kg material 8.3
2.8
Embodied Energy, MJ/kg 150
40
Embodied Water, L/kg 1190
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 13 to 24
15 to 210
Resilience: Unit (Modulus of Resilience), kJ/m3 37 to 210
460 to 3750
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
25
Strength to Weight: Axial, points 14 to 23
42 to 59
Strength to Weight: Bending, points 22 to 30
32 to 40
Thermal Diffusivity, mm2/s 85
4.1
Thermal Shock Resistance, points 6.3 to 9.9
39 to 54

Alloy Composition

Aluminum (Al), % 97.9 to 99.3
0.75 to 1.5
Carbon (C), % 0
0 to 0.090
Chromium (Cr), % 0 to 0.050
16 to 18
Copper (Cu), % 0 to 0.1
0
Iron (Fe), % 0.1 to 0.3
70.5 to 76.8
Magnesium (Mg), % 0.35 to 0.6
0
Manganese (Mn), % 0 to 0.1
0 to 1.0
Nickel (Ni), % 0
6.5 to 7.8
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0.3 to 0.6
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.1
0
Zinc (Zn), % 0 to 0.15
0
Residuals, % 0 to 0.15
0