MakeItFrom.com
Menu (ESC)

6061 Aluminum vs. AISI 440C Stainless Steel

6061 aluminum belongs to the aluminum alloys classification, while AISI 440C stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 6061 aluminum and the bottom bar is AISI 440C stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
200
Elongation at Break, % 3.4 to 20
2.0 to 14
Fatigue Strength, MPa 58 to 110
260 to 840
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
76
Shear Strength, MPa 84 to 210
430 to 1120
Tensile Strength: Ultimate (UTS), MPa 130 to 410
710 to 1970
Tensile Strength: Yield (Proof), MPa 76 to 370
450 to 1900

Thermal Properties

Latent Heat of Fusion, J/g 400
280
Maximum Temperature: Mechanical, °C 170
870
Melting Completion (Liquidus), °C 650
1480
Melting Onset (Solidus), °C 580
1370
Specific Heat Capacity, J/kg-K 900
480
Thermal Conductivity, W/m-K 170
22
Thermal Expansion, µm/m-K 24
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 43
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 140
2.8

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
9.0
Density, g/cm3 2.7
7.7
Embodied Carbon, kg CO2/kg material 8.3
2.2
Embodied Energy, MJ/kg 150
31
Embodied Water, L/kg 1180
120

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 3.8 to 81
39 to 88
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
25
Strength to Weight: Axial, points 13 to 42
26 to 71
Strength to Weight: Bending, points 21 to 45
23 to 46
Thermal Diffusivity, mm2/s 68
6.0
Thermal Shock Resistance, points 5.7 to 18
26 to 71

Alloy Composition

Aluminum (Al), % 95.9 to 98.6
0
Carbon (C), % 0
1.0 to 1.2
Chromium (Cr), % 0.040 to 0.35
16 to 18
Copper (Cu), % 0.15 to 0.4
0
Iron (Fe), % 0 to 0.7
78 to 83.1
Magnesium (Mg), % 0.8 to 1.2
0
Manganese (Mn), % 0 to 0.15
0 to 1.0
Molybdenum (Mo), % 0
0 to 0.75
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0.4 to 0.8
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 0 to 0.15
0
Zinc (Zn), % 0 to 0.25
0
Residuals, % 0 to 0.15
0

Comparable Variants