MakeItFrom.com
Menu (ESC)

6061 Aluminum vs. Nickel 684

6061 aluminum belongs to the aluminum alloys classification, while nickel 684 belongs to the nickel alloys. There are 26 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 6061 aluminum and the bottom bar is nickel 684.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
200
Elongation at Break, % 3.4 to 20
11
Fatigue Strength, MPa 58 to 110
390
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
76
Shear Strength, MPa 84 to 210
710
Tensile Strength: Ultimate (UTS), MPa 130 to 410
1190
Tensile Strength: Yield (Proof), MPa 76 to 370
800

Thermal Properties

Latent Heat of Fusion, J/g 400
320
Maximum Temperature: Mechanical, °C 170
1000
Melting Completion (Liquidus), °C 650
1370
Melting Onset (Solidus), °C 580
1320
Specific Heat Capacity, J/kg-K 900
470
Thermal Expansion, µm/m-K 24
13

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
75
Density, g/cm3 2.7
8.3
Embodied Carbon, kg CO2/kg material 8.3
10
Embodied Energy, MJ/kg 150
140
Embodied Water, L/kg 1180
360

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 3.8 to 81
120
Resilience: Unit (Modulus of Resilience), kJ/m3 42 to 1000
1610
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 50
23
Strength to Weight: Axial, points 13 to 42
40
Strength to Weight: Bending, points 21 to 45
30
Thermal Shock Resistance, points 5.7 to 18
34

Alloy Composition

Aluminum (Al), % 95.9 to 98.6
2.5 to 3.3
Boron (B), % 0
0.0030 to 0.010
Carbon (C), % 0
0 to 0.15
Chromium (Cr), % 0.040 to 0.35
15 to 20
Cobalt (Co), % 0
13 to 20
Copper (Cu), % 0.15 to 0.4
0 to 0.15
Iron (Fe), % 0 to 0.7
0 to 4.0
Magnesium (Mg), % 0.8 to 1.2
0
Manganese (Mn), % 0 to 0.15
0 to 0.75
Molybdenum (Mo), % 0
3.0 to 5.0
Nickel (Ni), % 0
42.7 to 64
Phosphorus (P), % 0
0 to 0.015
Silicon (Si), % 0.4 to 0.8
0 to 0.75
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 0 to 0.15
2.5 to 3.3
Zinc (Zn), % 0 to 0.25
0
Residuals, % 0 to 0.15
0