MakeItFrom.com
Menu (ESC)

6061 Aluminum vs. Nickel 725

6061 aluminum belongs to the aluminum alloys classification, while nickel 725 belongs to the nickel alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 6061 aluminum and the bottom bar is nickel 725.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
200
Elongation at Break, % 3.4 to 20
34
Fatigue Strength, MPa 58 to 110
260
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
78
Shear Strength, MPa 84 to 210
580
Tensile Strength: Ultimate (UTS), MPa 130 to 410
860
Tensile Strength: Yield (Proof), MPa 76 to 370
350

Thermal Properties

Latent Heat of Fusion, J/g 400
320
Maximum Temperature: Mechanical, °C 170
980
Melting Completion (Liquidus), °C 650
1340
Melting Onset (Solidus), °C 580
1270
Specific Heat Capacity, J/kg-K 900
440
Thermal Expansion, µm/m-K 24
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 43
1.5
Electrical Conductivity: Equal Weight (Specific), % IACS 140
1.6

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
75
Density, g/cm3 2.7
8.5
Embodied Carbon, kg CO2/kg material 8.3
13
Embodied Energy, MJ/kg 150
190
Embodied Water, L/kg 1180
270

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 3.8 to 81
240
Resilience: Unit (Modulus of Resilience), kJ/m3 42 to 1000
300
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 50
23
Strength to Weight: Axial, points 13 to 42
28
Strength to Weight: Bending, points 21 to 45
24
Thermal Shock Resistance, points 5.7 to 18
23

Alloy Composition

Aluminum (Al), % 95.9 to 98.6
0 to 0.35
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0.040 to 0.35
19 to 22.5
Copper (Cu), % 0.15 to 0.4
0
Iron (Fe), % 0 to 0.7
2.3 to 15.3
Magnesium (Mg), % 0.8 to 1.2
0
Manganese (Mn), % 0 to 0.15
0 to 0.35
Molybdenum (Mo), % 0
7.0 to 9.5
Nickel (Ni), % 0
55 to 59
Niobium (Nb), % 0
2.8 to 4.0
Phosphorus (P), % 0
0 to 0.015
Silicon (Si), % 0.4 to 0.8
0 to 0.2
Sulfur (S), % 0
0 to 0.010
Titanium (Ti), % 0 to 0.15
1.0 to 1.7
Zinc (Zn), % 0 to 0.25
0
Residuals, % 0 to 0.15
0