MakeItFrom.com
Menu (ESC)

6061 Aluminum vs. C70400 Copper-nickel

6061 aluminum belongs to the aluminum alloys classification, while C70400 copper-nickel belongs to the copper alloys. There are 26 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 6061 aluminum and the bottom bar is C70400 copper-nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
120
Poisson's Ratio 0.33
0.34
Shear Modulus, GPa 26
45
Tensile Strength: Ultimate (UTS), MPa 130 to 410
300 to 310
Tensile Strength: Yield (Proof), MPa 76 to 370
95 to 230

Thermal Properties

Latent Heat of Fusion, J/g 400
210
Maximum Temperature: Mechanical, °C 170
210
Melting Completion (Liquidus), °C 650
1120
Melting Onset (Solidus), °C 580
1060
Specific Heat Capacity, J/kg-K 900
390
Thermal Conductivity, W/m-K 170
64
Thermal Expansion, µm/m-K 24
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 43
14
Electrical Conductivity: Equal Weight (Specific), % IACS 140
14

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
32
Density, g/cm3 2.7
8.9
Embodied Carbon, kg CO2/kg material 8.3
3.0
Embodied Energy, MJ/kg 150
47
Embodied Water, L/kg 1180
300

Common Calculations

Resilience: Unit (Modulus of Resilience), kJ/m3 42 to 1000
38 to 220
Stiffness to Weight: Axial, points 14
7.5
Stiffness to Weight: Bending, points 50
19
Strength to Weight: Axial, points 13 to 42
9.3 to 9.8
Strength to Weight: Bending, points 21 to 45
11 to 12
Thermal Diffusivity, mm2/s 68
18
Thermal Shock Resistance, points 5.7 to 18
10 to 11

Alloy Composition

Aluminum (Al), % 95.9 to 98.6
0
Chromium (Cr), % 0.040 to 0.35
0
Copper (Cu), % 0.15 to 0.4
89.8 to 93.6
Iron (Fe), % 0 to 0.7
1.3 to 1.7
Lead (Pb), % 0
0 to 0.050
Magnesium (Mg), % 0.8 to 1.2
0
Manganese (Mn), % 0 to 0.15
0.3 to 0.8
Nickel (Ni), % 0
4.8 to 6.2
Silicon (Si), % 0.4 to 0.8
0
Titanium (Ti), % 0 to 0.15
0
Zinc (Zn), % 0 to 0.25
0 to 1.0
Residuals, % 0
0 to 0.5