MakeItFrom.com
Menu (ESC)

6061 Aluminum vs. S44537 Stainless Steel

6061 aluminum belongs to the aluminum alloys classification, while S44537 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 6061 aluminum and the bottom bar is S44537 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
200
Elongation at Break, % 3.4 to 20
21
Fatigue Strength, MPa 58 to 110
230
Poisson's Ratio 0.33
0.27
Shear Modulus, GPa 26
79
Shear Strength, MPa 84 to 210
320
Tensile Strength: Ultimate (UTS), MPa 130 to 410
510
Tensile Strength: Yield (Proof), MPa 76 to 370
360

Thermal Properties

Latent Heat of Fusion, J/g 400
290
Maximum Temperature: Mechanical, °C 170
1000
Melting Completion (Liquidus), °C 650
1480
Melting Onset (Solidus), °C 580
1430
Specific Heat Capacity, J/kg-K 900
470
Thermal Conductivity, W/m-K 170
21
Thermal Expansion, µm/m-K 24
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 43
2.6
Electrical Conductivity: Equal Weight (Specific), % IACS 140
3.0

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
19
Density, g/cm3 2.7
7.9
Embodied Carbon, kg CO2/kg material 8.3
3.4
Embodied Energy, MJ/kg 150
50
Embodied Water, L/kg 1180
140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 3.8 to 81
95
Resilience: Unit (Modulus of Resilience), kJ/m3 42 to 1000
320
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
25
Strength to Weight: Axial, points 13 to 42
18
Strength to Weight: Bending, points 21 to 45
18
Thermal Diffusivity, mm2/s 68
5.6
Thermal Shock Resistance, points 5.7 to 18
17

Alloy Composition

Aluminum (Al), % 95.9 to 98.6
0 to 0.1
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0.040 to 0.35
20 to 24
Copper (Cu), % 0.15 to 0.4
0 to 0.5
Iron (Fe), % 0 to 0.7
69 to 78.6
Lanthanum (La), % 0
0.040 to 0.2
Magnesium (Mg), % 0.8 to 1.2
0
Manganese (Mn), % 0 to 0.15
0 to 0.8
Nickel (Ni), % 0
0 to 0.5
Niobium (Nb), % 0
0.2 to 1.0
Nitrogen (N), % 0
0 to 0.040
Phosphorus (P), % 0
0 to 0.050
Silicon (Si), % 0.4 to 0.8
0.1 to 0.6
Sulfur (S), % 0
0 to 0.0060
Titanium (Ti), % 0 to 0.15
0.020 to 0.2
Tungsten (W), % 0
1.0 to 3.0
Zinc (Zn), % 0 to 0.25
0
Residuals, % 0 to 0.15
0