MakeItFrom.com
Menu (ESC)

6063 Aluminum vs. 6262 Aluminum

Both 6063 aluminum and 6262 aluminum are aluminum alloys. They have a very high 98% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is 6063 aluminum and the bottom bar is 6262 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
68
Elongation at Break, % 7.3 to 21
4.6 to 10
Fatigue Strength, MPa 39 to 95
90 to 110
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 26
26
Shear Strength, MPa 70 to 190
170 to 240
Tensile Strength: Ultimate (UTS), MPa 110 to 300
290 to 390
Tensile Strength: Yield (Proof), MPa 49 to 270
270 to 360

Thermal Properties

Latent Heat of Fusion, J/g 400
400
Maximum Temperature: Mechanical, °C 160
160
Melting Completion (Liquidus), °C 650
650
Melting Onset (Solidus), °C 620
580
Specific Heat Capacity, J/kg-K 900
890
Thermal Conductivity, W/m-K 190 to 220
170
Thermal Expansion, µm/m-K 23
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 49 to 58
44
Electrical Conductivity: Equal Weight (Specific), % IACS 160 to 190
140

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
10
Density, g/cm3 2.7
2.8
Embodied Carbon, kg CO2/kg material 8.3
8.3
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1190
1190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 13 to 27
17 to 31
Resilience: Unit (Modulus of Resilience), kJ/m3 18 to 540
530 to 940
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 50
48
Strength to Weight: Axial, points 11 to 31
29 to 39
Strength to Weight: Bending, points 18 to 37
35 to 42
Thermal Diffusivity, mm2/s 79 to 89
69
Thermal Shock Resistance, points 4.8 to 13
13 to 18

Alloy Composition

Aluminum (Al), % 97.5 to 99.4
94.7 to 97.8
Bismuth (Bi), % 0
0.4 to 0.7
Chromium (Cr), % 0 to 0.1
0.040 to 0.14
Copper (Cu), % 0 to 0.1
0.15 to 0.4
Iron (Fe), % 0 to 0.35
0 to 0.7
Lead (Pb), % 0
0.4 to 0.7
Magnesium (Mg), % 0.45 to 0.9
0.8 to 1.2
Manganese (Mn), % 0 to 0.1
0 to 0.15
Silicon (Si), % 0.2 to 0.6
0.4 to 0.8
Titanium (Ti), % 0 to 0.1
0 to 0.15
Zinc (Zn), % 0 to 0.1
0 to 0.25
Residuals, % 0
0 to 0.15

Comparable Variants