MakeItFrom.com
Menu (ESC)

6063 Aluminum vs. AWS E219

6063 aluminum belongs to the aluminum alloys classification, while AWS E219 belongs to the iron alloys. There are 22 material properties with values for both materials. Properties with values for just one material (11, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 6063 aluminum and the bottom bar is AWS E219.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
200
Elongation at Break, % 7.3 to 21
17
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
78
Tensile Strength: Ultimate (UTS), MPa 110 to 300
690

Thermal Properties

Latent Heat of Fusion, J/g 400
290
Melting Completion (Liquidus), °C 650
1400
Melting Onset (Solidus), °C 620
1360
Specific Heat Capacity, J/kg-K 900
480
Thermal Conductivity, W/m-K 190 to 220
14
Thermal Expansion, µm/m-K 23
15

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
15
Density, g/cm3 2.7
7.7
Embodied Carbon, kg CO2/kg material 8.3
3.1
Embodied Energy, MJ/kg 150
44
Embodied Water, L/kg 1190
160

Common Calculations

Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
25
Strength to Weight: Axial, points 11 to 31
25
Strength to Weight: Bending, points 18 to 37
23
Thermal Diffusivity, mm2/s 79 to 89
3.8
Thermal Shock Resistance, points 4.8 to 13
17

Alloy Composition

Aluminum (Al), % 97.5 to 99.4
0
Carbon (C), % 0
0 to 0.060
Chromium (Cr), % 0 to 0.1
19 to 21.5
Copper (Cu), % 0 to 0.1
0 to 0.75
Iron (Fe), % 0 to 0.35
58.6 to 67.4
Magnesium (Mg), % 0.45 to 0.9
0
Manganese (Mn), % 0 to 0.1
8.0 to 10
Molybdenum (Mo), % 0
0 to 0.75
Nickel (Ni), % 0
5.5 to 7.0
Nitrogen (N), % 0
0.1 to 0.3
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0.2 to 0.6
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.1
0
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.15
0