MakeItFrom.com
Menu (ESC)

6063 Aluminum vs. EN 1.0599 Steel

6063 aluminum belongs to the aluminum alloys classification, while EN 1.0599 steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 6063 aluminum and the bottom bar is EN 1.0599 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 25 to 95
180
Elastic (Young's, Tensile) Modulus, GPa 68
190
Elongation at Break, % 7.3 to 21
20
Fatigue Strength, MPa 39 to 95
310
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
73
Shear Strength, MPa 70 to 190
390
Tensile Strength: Ultimate (UTS), MPa 110 to 300
620
Tensile Strength: Yield (Proof), MPa 49 to 270
440

Thermal Properties

Latent Heat of Fusion, J/g 400
250
Maximum Temperature: Mechanical, °C 160
400
Melting Completion (Liquidus), °C 650
1460
Melting Onset (Solidus), °C 620
1420
Specific Heat Capacity, J/kg-K 900
470
Thermal Conductivity, W/m-K 190 to 220
47
Thermal Expansion, µm/m-K 23
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 49 to 58
7.4
Electrical Conductivity: Equal Weight (Specific), % IACS 160 to 190
8.5

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
2.4
Density, g/cm3 2.7
7.8
Embodied Carbon, kg CO2/kg material 8.3
1.8
Embodied Energy, MJ/kg 150
24
Embodied Water, L/kg 1190
50

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 13 to 27
110
Resilience: Unit (Modulus of Resilience), kJ/m3 18 to 540
520
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 50
24
Strength to Weight: Axial, points 11 to 31
22
Strength to Weight: Bending, points 18 to 37
21
Thermal Diffusivity, mm2/s 79 to 89
13
Thermal Shock Resistance, points 4.8 to 13
20

Alloy Composition

Aluminum (Al), % 97.5 to 99.4
0.010 to 0.050
Carbon (C), % 0
0.16 to 0.22
Chromium (Cr), % 0 to 0.1
0 to 0.3
Copper (Cu), % 0 to 0.1
0 to 0.3
Iron (Fe), % 0 to 0.35
96.1 to 98.4
Magnesium (Mg), % 0.45 to 0.9
0
Manganese (Mn), % 0 to 0.1
1.3 to 1.7
Molybdenum (Mo), % 0
0 to 0.080
Nickel (Ni), % 0
0 to 0.4
Niobium (Nb), % 0
0 to 0.070
Nitrogen (N), % 0
0 to 0.020
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0.2 to 0.6
0.1 to 0.5
Sulfur (S), % 0
0 to 0.035
Titanium (Ti), % 0 to 0.1
0 to 0.050
Vanadium (V), % 0
0.080 to 0.15
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.15
0