MakeItFrom.com
Menu (ESC)

6063 Aluminum vs. EN 1.4446 Stainless Steel

6063 aluminum belongs to the aluminum alloys classification, while EN 1.4446 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 6063 aluminum and the bottom bar is EN 1.4446 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 25 to 95
140
Elastic (Young's, Tensile) Modulus, GPa 68
200
Elongation at Break, % 7.3 to 21
23
Fatigue Strength, MPa 39 to 95
160
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
79
Tensile Strength: Ultimate (UTS), MPa 110 to 300
490
Tensile Strength: Yield (Proof), MPa 49 to 270
240

Thermal Properties

Latent Heat of Fusion, J/g 400
290
Maximum Temperature: Mechanical, °C 160
980
Melting Completion (Liquidus), °C 650
1460
Melting Onset (Solidus), °C 620
1410
Specific Heat Capacity, J/kg-K 900
470
Thermal Conductivity, W/m-K 190 to 220
14
Thermal Expansion, µm/m-K 23
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 49 to 58
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 160 to 190
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
22
Density, g/cm3 2.7
7.9
Embodied Carbon, kg CO2/kg material 8.3
4.5
Embodied Energy, MJ/kg 150
60
Embodied Water, L/kg 1190
160

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 13 to 27
93
Resilience: Unit (Modulus of Resilience), kJ/m3 18 to 540
140
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
25
Strength to Weight: Axial, points 11 to 31
17
Strength to Weight: Bending, points 18 to 37
17
Thermal Diffusivity, mm2/s 79 to 89
3.6
Thermal Shock Resistance, points 4.8 to 13
11

Alloy Composition

Aluminum (Al), % 97.5 to 99.4
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0 to 0.1
16.5 to 18.5
Copper (Cu), % 0 to 0.1
0
Iron (Fe), % 0 to 0.35
59.7 to 66.9
Magnesium (Mg), % 0.45 to 0.9
0
Manganese (Mn), % 0 to 0.1
0 to 1.5
Molybdenum (Mo), % 0
4.0 to 4.5
Nickel (Ni), % 0
12.5 to 14.5
Nitrogen (N), % 0
0.12 to 0.22
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0.2 to 0.6
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.1
0
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.15
0