MakeItFrom.com
Menu (ESC)

6063 Aluminum vs. EN 1.4910 Stainless Steel

6063 aluminum belongs to the aluminum alloys classification, while EN 1.4910 stainless steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 6063 aluminum and the bottom bar is EN 1.4910 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 25 to 95
200
Elastic (Young's, Tensile) Modulus, GPa 68
200
Elongation at Break, % 7.3 to 21
41
Fatigue Strength, MPa 39 to 95
250
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
78
Shear Strength, MPa 70 to 190
450
Tensile Strength: Ultimate (UTS), MPa 110 to 300
650
Tensile Strength: Yield (Proof), MPa 49 to 270
290

Thermal Properties

Latent Heat of Fusion, J/g 400
290
Maximum Temperature: Mechanical, °C 160
950
Melting Completion (Liquidus), °C 650
1440
Melting Onset (Solidus), °C 620
1400
Specific Heat Capacity, J/kg-K 900
470
Thermal Conductivity, W/m-K 190 to 220
16
Thermal Expansion, µm/m-K 23
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 49 to 58
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 160 to 190
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
20
Density, g/cm3 2.7
7.9
Embodied Carbon, kg CO2/kg material 8.3
3.9
Embodied Energy, MJ/kg 150
54
Embodied Water, L/kg 1190
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 13 to 27
220
Resilience: Unit (Modulus of Resilience), kJ/m3 18 to 540
210
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
25
Strength to Weight: Axial, points 11 to 31
23
Strength to Weight: Bending, points 18 to 37
21
Thermal Diffusivity, mm2/s 79 to 89
4.3
Thermal Shock Resistance, points 4.8 to 13
14

Alloy Composition

Aluminum (Al), % 97.5 to 99.4
0
Boron (B), % 0
0.0015 to 0.0050
Carbon (C), % 0
0 to 0.040
Chromium (Cr), % 0 to 0.1
16 to 18
Copper (Cu), % 0 to 0.1
0
Iron (Fe), % 0 to 0.35
62 to 69.9
Magnesium (Mg), % 0.45 to 0.9
0
Manganese (Mn), % 0 to 0.1
0 to 2.0
Molybdenum (Mo), % 0
2.0 to 3.0
Nickel (Ni), % 0
12 to 14
Nitrogen (N), % 0
0.1 to 0.18
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 0.2 to 0.6
0 to 0.75
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 0 to 0.1
0
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.15
0