MakeItFrom.com
Menu (ESC)

6063 Aluminum vs. EN 1.7709 Steel

6063 aluminum belongs to the aluminum alloys classification, while EN 1.7709 steel belongs to the iron alloys. There are 25 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 6063 aluminum and the bottom bar is EN 1.7709 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 25 to 95
200 to 230
Elastic (Young's, Tensile) Modulus, GPa 68
190
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
73
Tensile Strength: Ultimate (UTS), MPa 110 to 300
650 to 780

Thermal Properties

Latent Heat of Fusion, J/g 400
250
Maximum Temperature: Mechanical, °C 160
440
Melting Completion (Liquidus), °C 650
1470
Melting Onset (Solidus), °C 620
1420
Specific Heat Capacity, J/kg-K 900
470
Thermal Conductivity, W/m-K 190 to 220
33
Thermal Expansion, µm/m-K 23
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 49 to 58
7.5
Electrical Conductivity: Equal Weight (Specific), % IACS 160 to 190
8.6

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
3.4
Density, g/cm3 2.7
7.8
Embodied Carbon, kg CO2/kg material 8.3
2.3
Embodied Energy, MJ/kg 150
32
Embodied Water, L/kg 1190
56

Common Calculations

Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 50
24
Strength to Weight: Axial, points 11 to 31
23 to 27
Strength to Weight: Bending, points 18 to 37
21 to 24
Thermal Diffusivity, mm2/s 79 to 89
8.9
Thermal Shock Resistance, points 4.8 to 13
22 to 26

Alloy Composition

Aluminum (Al), % 97.5 to 99.4
0 to 0.030
Carbon (C), % 0
0.17 to 0.25
Chromium (Cr), % 0 to 0.1
1.2 to 1.5
Copper (Cu), % 0 to 0.1
0
Iron (Fe), % 0 to 0.35
95.2 to 97.5
Magnesium (Mg), % 0.45 to 0.9
0
Manganese (Mn), % 0 to 0.1
0.4 to 0.8
Molybdenum (Mo), % 0
0.55 to 0.8
Nickel (Ni), % 0
0 to 0.6
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0.2 to 0.6
0 to 0.4
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.1
0
Vanadium (V), % 0
0.2 to 0.35
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.15
0