MakeItFrom.com
Menu (ESC)

6063 Aluminum vs. CC334G Bronze

6063 aluminum belongs to the aluminum alloys classification, while CC334G bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 6063 aluminum and the bottom bar is CC334G bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 25 to 95
210
Elastic (Young's, Tensile) Modulus, GPa 68
120
Elongation at Break, % 7.3 to 21
5.6
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 26
45
Tensile Strength: Ultimate (UTS), MPa 110 to 300
810
Tensile Strength: Yield (Proof), MPa 49 to 270
410

Thermal Properties

Latent Heat of Fusion, J/g 400
240
Maximum Temperature: Mechanical, °C 160
240
Melting Completion (Liquidus), °C 650
1080
Melting Onset (Solidus), °C 620
1020
Specific Heat Capacity, J/kg-K 900
450
Thermal Conductivity, W/m-K 190 to 220
41
Thermal Expansion, µm/m-K 23
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 49 to 58
7.3
Electrical Conductivity: Equal Weight (Specific), % IACS 160 to 190
8.0

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
29
Density, g/cm3 2.7
8.2
Embodied Carbon, kg CO2/kg material 8.3
3.6
Embodied Energy, MJ/kg 150
59
Embodied Water, L/kg 1190
390

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 13 to 27
38
Resilience: Unit (Modulus of Resilience), kJ/m3 18 to 540
710
Stiffness to Weight: Axial, points 14
8.1
Stiffness to Weight: Bending, points 50
20
Strength to Weight: Axial, points 11 to 31
28
Strength to Weight: Bending, points 18 to 37
24
Thermal Diffusivity, mm2/s 79 to 89
11
Thermal Shock Resistance, points 4.8 to 13
28

Alloy Composition

Aluminum (Al), % 97.5 to 99.4
10 to 12
Chromium (Cr), % 0 to 0.1
0
Copper (Cu), % 0 to 0.1
72 to 84.5
Iron (Fe), % 0 to 0.35
3.0 to 7.0
Lead (Pb), % 0
0 to 0.050
Magnesium (Mg), % 0.45 to 0.9
0 to 0.050
Manganese (Mn), % 0 to 0.1
0 to 2.5
Nickel (Ni), % 0
4.0 to 7.5
Silicon (Si), % 0.2 to 0.6
0 to 0.1
Tin (Sn), % 0
0 to 0.2
Titanium (Ti), % 0 to 0.1
0
Zinc (Zn), % 0 to 0.1
0 to 0.5
Residuals, % 0 to 0.15
0