MakeItFrom.com
Menu (ESC)

6063 Aluminum vs. C77100 Nickel Silver

6063 aluminum belongs to the aluminum alloys classification, while C77100 nickel silver belongs to the copper alloys. There are 26 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 6063 aluminum and the bottom bar is C77100 nickel silver.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
110
Poisson's Ratio 0.33
0.31
Shear Modulus, GPa 26
45
Tensile Strength: Ultimate (UTS), MPa 110 to 300
600
Tensile Strength: Yield (Proof), MPa 49 to 270
540

Thermal Properties

Latent Heat of Fusion, J/g 400
180
Maximum Temperature: Mechanical, °C 160
150
Melting Completion (Liquidus), °C 650
990
Melting Onset (Solidus), °C 620
950
Specific Heat Capacity, J/kg-K 900
390
Thermal Conductivity, W/m-K 190 to 220
40
Thermal Expansion, µm/m-K 23
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 49 to 58
7.6
Electrical Conductivity: Equal Weight (Specific), % IACS 160 to 190
8.5

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
27
Density, g/cm3 2.7
8.1
Embodied Carbon, kg CO2/kg material 8.3
3.5
Embodied Energy, MJ/kg 150
56
Embodied Water, L/kg 1190
310

Common Calculations

Resilience: Unit (Modulus of Resilience), kJ/m3 18 to 540
1280
Stiffness to Weight: Axial, points 14
7.8
Stiffness to Weight: Bending, points 50
20
Strength to Weight: Axial, points 11 to 31
21
Strength to Weight: Bending, points 18 to 37
20
Thermal Diffusivity, mm2/s 79 to 89
13
Thermal Shock Resistance, points 4.8 to 13
19

Alloy Composition

Aluminum (Al), % 97.5 to 99.4
0
Chromium (Cr), % 0 to 0.1
0
Copper (Cu), % 0 to 0.1
52 to 56
Iron (Fe), % 0 to 0.35
0
Lead (Pb), % 0
0 to 0.030
Magnesium (Mg), % 0.45 to 0.9
0
Manganese (Mn), % 0 to 0.1
0 to 0.9
Nickel (Ni), % 0
9.0 to 12
Silicon (Si), % 0.2 to 0.6
0
Titanium (Ti), % 0 to 0.1
0
Zinc (Zn), % 0 to 0.1
30.6 to 39
Residuals, % 0
0 to 0.5