MakeItFrom.com
Menu (ESC)

6063 Aluminum vs. C96200 Copper-nickel

6063 aluminum belongs to the aluminum alloys classification, while C96200 copper-nickel belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 6063 aluminum and the bottom bar is C96200 copper-nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
120
Elongation at Break, % 7.3 to 21
23
Poisson's Ratio 0.33
0.34
Shear Modulus, GPa 26
46
Tensile Strength: Ultimate (UTS), MPa 110 to 300
350
Tensile Strength: Yield (Proof), MPa 49 to 270
190

Thermal Properties

Latent Heat of Fusion, J/g 400
220
Maximum Temperature: Mechanical, °C 160
220
Melting Completion (Liquidus), °C 650
1150
Melting Onset (Solidus), °C 620
1100
Specific Heat Capacity, J/kg-K 900
390
Thermal Conductivity, W/m-K 190 to 220
45
Thermal Expansion, µm/m-K 23
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 49 to 58
11
Electrical Conductivity: Equal Weight (Specific), % IACS 160 to 190
11

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
36
Density, g/cm3 2.7
8.9
Embodied Carbon, kg CO2/kg material 8.3
3.8
Embodied Energy, MJ/kg 150
58
Embodied Water, L/kg 1190
300

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 13 to 27
68
Resilience: Unit (Modulus of Resilience), kJ/m3 18 to 540
150
Stiffness to Weight: Axial, points 14
7.8
Stiffness to Weight: Bending, points 50
19
Strength to Weight: Axial, points 11 to 31
11
Strength to Weight: Bending, points 18 to 37
13
Thermal Diffusivity, mm2/s 79 to 89
13
Thermal Shock Resistance, points 4.8 to 13
12

Alloy Composition

Aluminum (Al), % 97.5 to 99.4
0
Carbon (C), % 0
0 to 0.1
Chromium (Cr), % 0 to 0.1
0
Copper (Cu), % 0 to 0.1
83.6 to 90
Iron (Fe), % 0 to 0.35
1.0 to 1.8
Lead (Pb), % 0
0 to 0.010
Magnesium (Mg), % 0.45 to 0.9
0
Manganese (Mn), % 0 to 0.1
0 to 1.5
Nickel (Ni), % 0
9.0 to 11
Niobium (Nb), % 0
0 to 1.0
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 0.2 to 0.6
0 to 0.5
Sulfur (S), % 0
0 to 0.020
Titanium (Ti), % 0 to 0.1
0
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0
0 to 0.5