MakeItFrom.com
Menu (ESC)

6063 Aluminum vs. N06200 Nickel

6063 aluminum belongs to the aluminum alloys classification, while N06200 nickel belongs to the nickel alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 6063 aluminum and the bottom bar is N06200 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
220
Elongation at Break, % 7.3 to 21
51
Fatigue Strength, MPa 39 to 95
290
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
84
Shear Strength, MPa 70 to 190
560
Tensile Strength: Ultimate (UTS), MPa 110 to 300
780
Tensile Strength: Yield (Proof), MPa 49 to 270
320

Thermal Properties

Latent Heat of Fusion, J/g 400
330
Maximum Temperature: Mechanical, °C 160
990
Melting Completion (Liquidus), °C 650
1500
Melting Onset (Solidus), °C 620
1450
Specific Heat Capacity, J/kg-K 900
430
Thermal Conductivity, W/m-K 190 to 220
9.1
Thermal Expansion, µm/m-K 23
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 49 to 58
1.3
Electrical Conductivity: Equal Weight (Specific), % IACS 160 to 190
1.4

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
65
Density, g/cm3 2.7
8.7
Embodied Carbon, kg CO2/kg material 8.3
12
Embodied Energy, MJ/kg 150
160
Embodied Water, L/kg 1190
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 13 to 27
320
Resilience: Unit (Modulus of Resilience), kJ/m3 18 to 540
240
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
23
Strength to Weight: Axial, points 11 to 31
25
Strength to Weight: Bending, points 18 to 37
22
Thermal Diffusivity, mm2/s 79 to 89
2.4
Thermal Shock Resistance, points 4.8 to 13
21

Alloy Composition

Aluminum (Al), % 97.5 to 99.4
0 to 0.5
Carbon (C), % 0
0 to 0.010
Chromium (Cr), % 0 to 0.1
22 to 24
Cobalt (Co), % 0
0 to 2.0
Copper (Cu), % 0 to 0.1
1.3 to 1.9
Iron (Fe), % 0 to 0.35
0 to 3.0
Magnesium (Mg), % 0.45 to 0.9
0
Manganese (Mn), % 0 to 0.1
0 to 0.010
Molybdenum (Mo), % 0
15 to 17
Nickel (Ni), % 0
51 to 61.7
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0.2 to 0.6
0 to 0.080
Sulfur (S), % 0
0 to 0.010
Titanium (Ti), % 0 to 0.1
0
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.15
0