MakeItFrom.com
Menu (ESC)

6063 Aluminum vs. N08028 Stainless Steel

6063 aluminum belongs to the aluminum alloys classification, while N08028 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 6063 aluminum and the bottom bar is N08028 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 25 to 95
180
Elastic (Young's, Tensile) Modulus, GPa 68
200
Elongation at Break, % 7.3 to 21
45
Fatigue Strength, MPa 39 to 95
220
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
80
Shear Strength, MPa 70 to 190
400
Tensile Strength: Ultimate (UTS), MPa 110 to 300
570
Tensile Strength: Yield (Proof), MPa 49 to 270
240

Thermal Properties

Latent Heat of Fusion, J/g 400
320
Maximum Temperature: Mechanical, °C 160
1100
Melting Completion (Liquidus), °C 650
1420
Melting Onset (Solidus), °C 620
1370
Specific Heat Capacity, J/kg-K 900
470
Thermal Conductivity, W/m-K 190 to 220
12
Thermal Expansion, µm/m-K 23
16

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
37
Density, g/cm3 2.7
8.1
Embodied Carbon, kg CO2/kg material 8.3
6.4
Embodied Energy, MJ/kg 150
89
Embodied Water, L/kg 1190
240

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 13 to 27
210
Resilience: Unit (Modulus of Resilience), kJ/m3 18 to 540
140
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
24
Strength to Weight: Axial, points 11 to 31
19
Strength to Weight: Bending, points 18 to 37
19
Thermal Diffusivity, mm2/s 79 to 89
3.2
Thermal Shock Resistance, points 4.8 to 13
12

Alloy Composition

Aluminum (Al), % 97.5 to 99.4
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0 to 0.1
26 to 28
Copper (Cu), % 0 to 0.1
0.6 to 1.4
Iron (Fe), % 0 to 0.35
29 to 40.4
Magnesium (Mg), % 0.45 to 0.9
0
Manganese (Mn), % 0 to 0.1
0 to 2.5
Molybdenum (Mo), % 0
3.0 to 4.0
Nickel (Ni), % 0
30 to 34
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0.2 to 0.6
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.1
0
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.15
0