MakeItFrom.com
Menu (ESC)

6063 Aluminum vs. N10276 Nickel

6063 aluminum belongs to the aluminum alloys classification, while N10276 nickel belongs to the nickel alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 6063 aluminum and the bottom bar is N10276 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
220
Elongation at Break, % 7.3 to 21
47
Fatigue Strength, MPa 39 to 95
280
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
84
Shear Strength, MPa 70 to 190
550
Tensile Strength: Ultimate (UTS), MPa 110 to 300
780
Tensile Strength: Yield (Proof), MPa 49 to 270
320

Thermal Properties

Latent Heat of Fusion, J/g 400
320
Maximum Temperature: Mechanical, °C 160
960
Melting Completion (Liquidus), °C 650
1370
Melting Onset (Solidus), °C 620
1320
Specific Heat Capacity, J/kg-K 900
410
Thermal Conductivity, W/m-K 190 to 220
9.1
Thermal Expansion, µm/m-K 23
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 49 to 58
1.3
Electrical Conductivity: Equal Weight (Specific), % IACS 160 to 190
1.3

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
70
Density, g/cm3 2.7
9.1
Embodied Carbon, kg CO2/kg material 8.3
13
Embodied Energy, MJ/kg 150
170
Embodied Water, L/kg 1190
280

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 13 to 27
300
Resilience: Unit (Modulus of Resilience), kJ/m3 18 to 540
230
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 50
22
Strength to Weight: Axial, points 11 to 31
24
Strength to Weight: Bending, points 18 to 37
21
Thermal Diffusivity, mm2/s 79 to 89
2.4
Thermal Shock Resistance, points 4.8 to 13
23

Alloy Composition

Aluminum (Al), % 97.5 to 99.4
0
Carbon (C), % 0
0 to 0.010
Chromium (Cr), % 0 to 0.1
14.5 to 16.5
Cobalt (Co), % 0
0 to 2.5
Copper (Cu), % 0 to 0.1
0
Iron (Fe), % 0 to 0.35
4.0 to 7.0
Magnesium (Mg), % 0.45 to 0.9
0
Manganese (Mn), % 0 to 0.1
0 to 0.010
Molybdenum (Mo), % 0
15 to 17
Nickel (Ni), % 0
51 to 63.5
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0.2 to 0.6
0 to 0.080
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.1
0
Tungsten (W), % 0
3.0 to 4.5
Vanadium (V), % 0
0 to 0.35
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.15
0