MakeItFrom.com
Menu (ESC)

6063 Aluminum vs. S31730 Stainless Steel

6063 aluminum belongs to the aluminum alloys classification, while S31730 stainless steel belongs to the iron alloys. There are 27 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 6063 aluminum and the bottom bar is S31730 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 25 to 95
180
Elastic (Young's, Tensile) Modulus, GPa 68
200
Elongation at Break, % 7.3 to 21
40
Fatigue Strength, MPa 39 to 95
170
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
77
Shear Strength, MPa 70 to 190
370
Tensile Strength: Ultimate (UTS), MPa 110 to 300
540
Tensile Strength: Yield (Proof), MPa 49 to 270
200

Thermal Properties

Latent Heat of Fusion, J/g 400
290
Maximum Temperature: Mechanical, °C 160
990
Melting Completion (Liquidus), °C 650
1430
Melting Onset (Solidus), °C 620
1390
Specific Heat Capacity, J/kg-K 900
470
Thermal Expansion, µm/m-K 23
16

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
24
Density, g/cm3 2.7
8.0
Embodied Carbon, kg CO2/kg material 8.3
4.6
Embodied Energy, MJ/kg 150
63
Embodied Water, L/kg 1190
180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 13 to 27
170
Resilience: Unit (Modulus of Resilience), kJ/m3 18 to 540
99
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
24
Strength to Weight: Axial, points 11 to 31
19
Strength to Weight: Bending, points 18 to 37
18
Thermal Shock Resistance, points 4.8 to 13
12

Alloy Composition

Aluminum (Al), % 97.5 to 99.4
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0 to 0.1
17 to 19
Copper (Cu), % 0 to 0.1
4.0 to 5.0
Iron (Fe), % 0 to 0.35
52.4 to 61
Magnesium (Mg), % 0.45 to 0.9
0
Manganese (Mn), % 0 to 0.1
0 to 2.0
Molybdenum (Mo), % 0
3.0 to 4.0
Nickel (Ni), % 0
15 to 16.5
Nitrogen (N), % 0
0 to 0.045
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0.2 to 0.6
0 to 1.0
Sulfur (S), % 0
0 to 0.010
Titanium (Ti), % 0 to 0.1
0
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.15
0