MakeItFrom.com
Menu (ESC)

6063-T62 Aluminum vs. 6066-T62 Aluminum

Both 6063-T62 aluminum and 6066-T62 aluminum are aluminum alloys. Both are furnished in the T62 temper. They have a very high 97% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is 6063-T62 aluminum and the bottom bar is 6066-T62 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
70
Elongation at Break, % 9.1
7.8
Fatigue Strength, MPa 82
130
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 26
26
Shear Strength, MPa 150
230
Tensile Strength: Ultimate (UTS), MPa 250
390
Tensile Strength: Yield (Proof), MPa 210
330

Thermal Properties

Latent Heat of Fusion, J/g 400
410
Maximum Temperature: Mechanical, °C 160
170
Melting Completion (Liquidus), °C 650
650
Melting Onset (Solidus), °C 620
560
Specific Heat Capacity, J/kg-K 900
890
Thermal Conductivity, W/m-K 200
150
Thermal Expansion, µm/m-K 23
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 53
40
Electrical Conductivity: Equal Weight (Specific), % IACS 180
130

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
9.5
Density, g/cm3 2.7
2.8
Embodied Carbon, kg CO2/kg material 8.3
8.3
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1190
1160

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 22
29
Resilience: Unit (Modulus of Resilience), kJ/m3 320
780
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
49
Strength to Weight: Axial, points 26
38
Strength to Weight: Bending, points 33
42
Thermal Diffusivity, mm2/s 82
61
Thermal Shock Resistance, points 11
17

Alloy Composition

Aluminum (Al), % 97.5 to 99.4
93 to 97
Chromium (Cr), % 0 to 0.1
0 to 0.4
Copper (Cu), % 0 to 0.1
0.7 to 1.2
Iron (Fe), % 0 to 0.35
0 to 0.5
Magnesium (Mg), % 0.45 to 0.9
0.8 to 1.4
Manganese (Mn), % 0 to 0.1
0.6 to 1.1
Silicon (Si), % 0.2 to 0.6
0.9 to 1.8
Titanium (Ti), % 0 to 0.1
0 to 0.2
Zinc (Zn), % 0 to 0.1
0 to 0.25
Residuals, % 0
0 to 0.15