MakeItFrom.com
Menu (ESC)

6063A Aluminum vs. AISI 316H Stainless Steel

6063A aluminum belongs to the aluminum alloys classification, while AISI 316H stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 6063A aluminum and the bottom bar is AISI 316H stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
200
Elongation at Break, % 6.7 to 18
40
Fatigue Strength, MPa 53 to 80
200
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
78
Shear Strength, MPa 78 to 150
400
Tensile Strength: Ultimate (UTS), MPa 130 to 260
580
Tensile Strength: Yield (Proof), MPa 55 to 200
230

Thermal Properties

Latent Heat of Fusion, J/g 400
290
Maximum Temperature: Mechanical, °C 160
940
Melting Completion (Liquidus), °C 640
1450
Melting Onset (Solidus), °C 620
1400
Specific Heat Capacity, J/kg-K 900
470
Thermal Conductivity, W/m-K 200
16
Thermal Expansion, µm/m-K 23
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 49 to 54
2.3
Electrical Conductivity: Equal Weight (Specific), % IACS 160 to 180
2.6

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
19
Density, g/cm3 2.7
7.9
Embodied Carbon, kg CO2/kg material 8.3
3.9
Embodied Energy, MJ/kg 150
53
Embodied Water, L/kg 1190
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 13 to 21
190
Resilience: Unit (Modulus of Resilience), kJ/m3 22 to 280
130
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
25
Strength to Weight: Axial, points 13 to 26
21
Strength to Weight: Bending, points 21 to 33
20
Thermal Diffusivity, mm2/s 83
4.2
Thermal Shock Resistance, points 5.6 to 11
13

Alloy Composition

Aluminum (Al), % 97.5 to 99
0
Carbon (C), % 0
0.040 to 0.1
Chromium (Cr), % 0 to 0.050
16 to 18
Copper (Cu), % 0 to 0.1
0
Iron (Fe), % 0.15 to 0.35
62.1 to 72
Magnesium (Mg), % 0.6 to 0.9
0
Manganese (Mn), % 0 to 0.15
0 to 2.0
Molybdenum (Mo), % 0
2.0 to 3.0
Nickel (Ni), % 0
10 to 14
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0.3 to 0.6
0 to 0.75
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.1
0
Zinc (Zn), % 0 to 0.15
0
Residuals, % 0 to 0.15
0