MakeItFrom.com
Menu (ESC)

6063A Aluminum vs. EN 1.4945 Stainless Steel

6063A aluminum belongs to the aluminum alloys classification, while EN 1.4945 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 6063A aluminum and the bottom bar is EN 1.4945 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
200
Elongation at Break, % 6.7 to 18
19 to 34
Fatigue Strength, MPa 53 to 80
230 to 350
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
77
Shear Strength, MPa 78 to 150
430 to 460
Tensile Strength: Ultimate (UTS), MPa 130 to 260
640 to 740
Tensile Strength: Yield (Proof), MPa 55 to 200
290 to 550

Thermal Properties

Latent Heat of Fusion, J/g 400
290
Maximum Temperature: Mechanical, °C 160
920
Melting Completion (Liquidus), °C 640
1490
Melting Onset (Solidus), °C 620
1440
Specific Heat Capacity, J/kg-K 900
470
Thermal Conductivity, W/m-K 200
14
Thermal Expansion, µm/m-K 23
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 49 to 54
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 160 to 180
3.2

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
30
Density, g/cm3 2.7
8.1
Embodied Carbon, kg CO2/kg material 8.3
5.0
Embodied Energy, MJ/kg 150
73
Embodied Water, L/kg 1190
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 13 to 21
130 to 180
Resilience: Unit (Modulus of Resilience), kJ/m3 22 to 280
210 to 760
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
24
Strength to Weight: Axial, points 13 to 26
22 to 25
Strength to Weight: Bending, points 21 to 33
20 to 22
Thermal Diffusivity, mm2/s 83
3.7
Thermal Shock Resistance, points 5.6 to 11
14 to 16

Alloy Composition

Aluminum (Al), % 97.5 to 99
0
Carbon (C), % 0
0.040 to 0.1
Chromium (Cr), % 0 to 0.050
15.5 to 17.5
Copper (Cu), % 0 to 0.1
0
Iron (Fe), % 0.15 to 0.35
57.9 to 65.7
Magnesium (Mg), % 0.6 to 0.9
0
Manganese (Mn), % 0 to 0.15
0 to 1.5
Nickel (Ni), % 0
15.5 to 17.5
Niobium (Nb), % 0
0.4 to 1.2
Nitrogen (N), % 0
0.060 to 0.14
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 0.3 to 0.6
0.3 to 0.6
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 0 to 0.1
0
Tungsten (W), % 0
2.5 to 3.5
Zinc (Zn), % 0 to 0.15
0
Residuals, % 0 to 0.15
0