MakeItFrom.com
Menu (ESC)

6063A Aluminum vs. EN 1.7703 Steel

6063A aluminum belongs to the aluminum alloys classification, while EN 1.7703 steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 6063A aluminum and the bottom bar is EN 1.7703 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
190
Elongation at Break, % 6.7 to 18
20
Fatigue Strength, MPa 53 to 80
320 to 340
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
74
Shear Strength, MPa 78 to 150
420 to 430
Tensile Strength: Ultimate (UTS), MPa 130 to 260
670 to 690
Tensile Strength: Yield (Proof), MPa 55 to 200
460 to 500

Thermal Properties

Latent Heat of Fusion, J/g 400
250
Maximum Temperature: Mechanical, °C 160
460
Melting Completion (Liquidus), °C 640
1470
Melting Onset (Solidus), °C 620
1430
Specific Heat Capacity, J/kg-K 900
470
Thermal Conductivity, W/m-K 200
39
Thermal Expansion, µm/m-K 23
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 49 to 54
7.6
Electrical Conductivity: Equal Weight (Specific), % IACS 160 to 180
8.7

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
4.2
Density, g/cm3 2.7
7.9
Embodied Carbon, kg CO2/kg material 8.3
2.5
Embodied Energy, MJ/kg 150
35
Embodied Water, L/kg 1190
61

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 13 to 21
120 to 130
Resilience: Unit (Modulus of Resilience), kJ/m3 22 to 280
570 to 650
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 50
24
Strength to Weight: Axial, points 13 to 26
24
Strength to Weight: Bending, points 21 to 33
22
Thermal Diffusivity, mm2/s 83
11
Thermal Shock Resistance, points 5.6 to 11
19 to 20

Alloy Composition

Aluminum (Al), % 97.5 to 99
0
Carbon (C), % 0
0.11 to 0.15
Chromium (Cr), % 0 to 0.050
2.0 to 2.5
Copper (Cu), % 0 to 0.1
0 to 0.2
Iron (Fe), % 0.15 to 0.35
94.6 to 96.4
Magnesium (Mg), % 0.6 to 0.9
0
Manganese (Mn), % 0 to 0.15
0.3 to 0.6
Molybdenum (Mo), % 0
0.9 to 1.1
Nickel (Ni), % 0
0 to 0.25
Niobium (Nb), % 0
0 to 0.070
Nitrogen (N), % 0
0 to 0.012
Phosphorus (P), % 0
0 to 0.015
Silicon (Si), % 0.3 to 0.6
0 to 0.1
Sulfur (S), % 0
0 to 0.0050
Titanium (Ti), % 0 to 0.1
0 to 0.030
Vanadium (V), % 0
0.25 to 0.35
Zinc (Zn), % 0 to 0.15
0
Residuals, % 0 to 0.15
0