MakeItFrom.com
Menu (ESC)

6063A Aluminum vs. CC381H Copper-nickel

6063A aluminum belongs to the aluminum alloys classification, while CC381H copper-nickel belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 6063A aluminum and the bottom bar is CC381H copper-nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
140
Elongation at Break, % 6.7 to 18
20
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 26
52
Tensile Strength: Ultimate (UTS), MPa 130 to 260
380
Tensile Strength: Yield (Proof), MPa 55 to 200
140

Thermal Properties

Latent Heat of Fusion, J/g 400
240
Maximum Temperature: Mechanical, °C 160
260
Melting Completion (Liquidus), °C 640
1180
Melting Onset (Solidus), °C 620
1120
Specific Heat Capacity, J/kg-K 900
410
Thermal Conductivity, W/m-K 200
30
Thermal Expansion, µm/m-K 23
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 49 to 54
6.8
Electrical Conductivity: Equal Weight (Specific), % IACS 160 to 180
6.9

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
40
Density, g/cm3 2.7
8.9
Embodied Carbon, kg CO2/kg material 8.3
5.0
Embodied Energy, MJ/kg 150
73
Embodied Water, L/kg 1190
280

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 13 to 21
60
Resilience: Unit (Modulus of Resilience), kJ/m3 22 to 280
68
Stiffness to Weight: Axial, points 14
8.6
Stiffness to Weight: Bending, points 50
19
Strength to Weight: Axial, points 13 to 26
12
Strength to Weight: Bending, points 21 to 33
13
Thermal Diffusivity, mm2/s 83
8.4
Thermal Shock Resistance, points 5.6 to 11
13

Alloy Composition

Aluminum (Al), % 97.5 to 99
0 to 0.010
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0 to 0.050
0
Copper (Cu), % 0 to 0.1
64.5 to 69.9
Iron (Fe), % 0.15 to 0.35
0.5 to 1.5
Lead (Pb), % 0
0 to 0.030
Magnesium (Mg), % 0.6 to 0.9
0
Manganese (Mn), % 0 to 0.15
0.6 to 1.2
Nickel (Ni), % 0
29 to 31
Phosphorus (P), % 0
0 to 0.010
Silicon (Si), % 0.3 to 0.6
0 to 0.1
Sulfur (S), % 0
0 to 0.010
Titanium (Ti), % 0 to 0.1
0
Zinc (Zn), % 0 to 0.15
0 to 0.5
Residuals, % 0 to 0.15
0