MakeItFrom.com
Menu (ESC)

6063A Aluminum vs. C54400 Bronze

6063A aluminum belongs to the aluminum alloys classification, while C54400 bronze belongs to the copper alloys. There are 24 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 6063A aluminum and the bottom bar is C54400 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
110
Poisson's Ratio 0.33
0.34
Shear Modulus, GPa 26
40
Tensile Strength: Ultimate (UTS), MPa 130 to 260
330 to 720

Thermal Properties

Latent Heat of Fusion, J/g 400
190
Maximum Temperature: Mechanical, °C 160
170
Melting Completion (Liquidus), °C 640
1000
Melting Onset (Solidus), °C 620
930
Specific Heat Capacity, J/kg-K 900
370
Thermal Conductivity, W/m-K 200
86
Thermal Expansion, µm/m-K 23
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 49 to 54
19
Electrical Conductivity: Equal Weight (Specific), % IACS 160 to 180
19

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
31
Density, g/cm3 2.7
8.9
Embodied Carbon, kg CO2/kg material 8.3
2.9
Embodied Energy, MJ/kg 150
48
Embodied Water, L/kg 1190
340

Common Calculations

Stiffness to Weight: Axial, points 14
6.8
Stiffness to Weight: Bending, points 50
18
Strength to Weight: Axial, points 13 to 26
10 to 22
Strength to Weight: Bending, points 21 to 33
12 to 20
Thermal Diffusivity, mm2/s 83
26
Thermal Shock Resistance, points 5.6 to 11
12 to 26

Alloy Composition

Aluminum (Al), % 97.5 to 99
0
Chromium (Cr), % 0 to 0.050
0
Copper (Cu), % 0 to 0.1
85.4 to 91.5
Iron (Fe), % 0.15 to 0.35
0 to 0.1
Lead (Pb), % 0
3.5 to 4.5
Magnesium (Mg), % 0.6 to 0.9
0
Manganese (Mn), % 0 to 0.15
0
Phosphorus (P), % 0
0.010 to 0.5
Silicon (Si), % 0.3 to 0.6
0
Tin (Sn), % 0
3.5 to 4.5
Titanium (Ti), % 0 to 0.1
0
Zinc (Zn), % 0 to 0.15
1.5 to 4.5
Residuals, % 0
0 to 0.5