MakeItFrom.com
Menu (ESC)

6063A Aluminum vs. N08031 Stainless Steel

6063A aluminum belongs to the aluminum alloys classification, while N08031 stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 6063A aluminum and the bottom bar is N08031 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
210
Elongation at Break, % 6.7 to 18
45
Fatigue Strength, MPa 53 to 80
290
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
81
Shear Strength, MPa 78 to 150
510
Tensile Strength: Ultimate (UTS), MPa 130 to 260
730
Tensile Strength: Yield (Proof), MPa 55 to 200
310

Thermal Properties

Latent Heat of Fusion, J/g 400
310
Maximum Temperature: Mechanical, °C 160
1100
Melting Completion (Liquidus), °C 640
1440
Melting Onset (Solidus), °C 620
1390
Specific Heat Capacity, J/kg-K 900
460
Thermal Conductivity, W/m-K 200
12
Thermal Expansion, µm/m-K 23
18

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
39
Density, g/cm3 2.7
8.1
Embodied Carbon, kg CO2/kg material 8.3
7.1
Embodied Energy, MJ/kg 150
96
Embodied Water, L/kg 1190
240

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 13 to 21
270
Resilience: Unit (Modulus of Resilience), kJ/m3 22 to 280
230
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
24
Strength to Weight: Axial, points 13 to 26
25
Strength to Weight: Bending, points 21 to 33
22
Thermal Diffusivity, mm2/s 83
3.1
Thermal Shock Resistance, points 5.6 to 11
14

Alloy Composition

Aluminum (Al), % 97.5 to 99
0
Carbon (C), % 0
0 to 0.015
Chromium (Cr), % 0 to 0.050
26 to 28
Copper (Cu), % 0 to 0.1
1.0 to 1.4
Iron (Fe), % 0.15 to 0.35
29 to 36.9
Magnesium (Mg), % 0.6 to 0.9
0
Manganese (Mn), % 0 to 0.15
0 to 2.0
Molybdenum (Mo), % 0
6.0 to 7.0
Nickel (Ni), % 0
30 to 32
Nitrogen (N), % 0
0.15 to 0.25
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 0.3 to 0.6
0 to 0.3
Sulfur (S), % 0
0 to 0.010
Titanium (Ti), % 0 to 0.1
0
Zinc (Zn), % 0 to 0.15
0
Residuals, % 0 to 0.15
0