MakeItFrom.com
Menu (ESC)

6065 Aluminum vs. 2018 Aluminum

Both 6065 aluminum and 2018 aluminum are aluminum alloys. They have a moderately high 94% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is 6065 aluminum and the bottom bar is 2018 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
73
Elongation at Break, % 4.5 to 11
9.6
Fatigue Strength, MPa 96 to 110
120
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 26
27
Shear Strength, MPa 190 to 230
270
Tensile Strength: Ultimate (UTS), MPa 310 to 400
420
Tensile Strength: Yield (Proof), MPa 270 to 380
310

Thermal Properties

Latent Heat of Fusion, J/g 400
390
Maximum Temperature: Mechanical, °C 180
220
Melting Completion (Liquidus), °C 640
640
Melting Onset (Solidus), °C 590
510
Specific Heat Capacity, J/kg-K 890
870
Thermal Conductivity, W/m-K 170
150
Thermal Expansion, µm/m-K 23
22

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 43
40
Electrical Conductivity: Equal Weight (Specific), % IACS 140
120

Otherwise Unclassified Properties

Base Metal Price, % relative 11
11
Density, g/cm3 2.8
3.1
Embodied Carbon, kg CO2/kg material 8.4
8.1
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1200
1130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 17 to 34
37
Resilience: Unit (Modulus of Resilience), kJ/m3 540 to 1040
670
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 49
45
Strength to Weight: Axial, points 31 to 40
38
Strength to Weight: Bending, points 36 to 43
41
Thermal Diffusivity, mm2/s 67
57
Thermal Shock Resistance, points 14 to 18
19

Alloy Composition

Aluminum (Al), % 94.4 to 98.2
89.7 to 94.4
Bismuth (Bi), % 0.5 to 1.5
0
Chromium (Cr), % 0 to 0.15
0 to 0.1
Copper (Cu), % 0.15 to 0.4
3.5 to 4.5
Iron (Fe), % 0 to 0.7
0 to 1.0
Lead (Pb), % 0 to 0.050
0
Magnesium (Mg), % 0.8 to 1.2
0.45 to 0.9
Manganese (Mn), % 0 to 0.15
0 to 0.2
Nickel (Ni), % 0
1.7 to 2.3
Silicon (Si), % 0.4 to 0.8
0 to 0.9
Titanium (Ti), % 0 to 0.1
0
Zinc (Zn), % 0 to 0.25
0 to 0.25
Zirconium (Zr), % 0 to 0.15
0
Residuals, % 0
0 to 0.15