MakeItFrom.com
Menu (ESC)

6065 Aluminum vs. 7020 Aluminum

Both 6065 aluminum and 7020 aluminum are aluminum alloys. They have a moderately high 95% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is 6065 aluminum and the bottom bar is 7020 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
70
Elongation at Break, % 4.5 to 11
8.4 to 14
Fatigue Strength, MPa 96 to 110
110 to 130
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 26
26
Shear Strength, MPa 190 to 230
110 to 230
Tensile Strength: Ultimate (UTS), MPa 310 to 400
190 to 390
Tensile Strength: Yield (Proof), MPa 270 to 380
120 to 310

Thermal Properties

Latent Heat of Fusion, J/g 400
380
Maximum Temperature: Mechanical, °C 180
210
Melting Completion (Liquidus), °C 640
650
Melting Onset (Solidus), °C 590
610
Specific Heat Capacity, J/kg-K 890
880
Thermal Conductivity, W/m-K 170
150
Thermal Expansion, µm/m-K 23
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 43
39
Electrical Conductivity: Equal Weight (Specific), % IACS 140
120

Otherwise Unclassified Properties

Base Metal Price, % relative 11
9.5
Density, g/cm3 2.8
2.9
Embodied Carbon, kg CO2/kg material 8.4
8.3
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1200
1150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 17 to 34
23 to 46
Resilience: Unit (Modulus of Resilience), kJ/m3 540 to 1040
110 to 690
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 49
47
Strength to Weight: Axial, points 31 to 40
18 to 37
Strength to Weight: Bending, points 36 to 43
25 to 41
Thermal Diffusivity, mm2/s 67
59
Thermal Shock Resistance, points 14 to 18
8.3 to 17

Alloy Composition

Aluminum (Al), % 94.4 to 98.2
91.2 to 94.8
Bismuth (Bi), % 0.5 to 1.5
0
Chromium (Cr), % 0 to 0.15
0.1 to 0.35
Copper (Cu), % 0.15 to 0.4
0 to 0.2
Iron (Fe), % 0 to 0.7
0 to 0.4
Lead (Pb), % 0 to 0.050
0
Magnesium (Mg), % 0.8 to 1.2
1.0 to 1.4
Manganese (Mn), % 0 to 0.15
0.050 to 0.5
Silicon (Si), % 0.4 to 0.8
0 to 0.35
Titanium (Ti), % 0 to 0.1
0 to 0.25
Zinc (Zn), % 0 to 0.25
4.0 to 5.0
Zirconium (Zr), % 0 to 0.15
0.080 to 0.25
Residuals, % 0
0 to 0.15

Comparable Variants