MakeItFrom.com
Menu (ESC)

6065 Aluminum vs. ACI-ASTM CA40 Steel

6065 aluminum belongs to the aluminum alloys classification, while ACI-ASTM CA40 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 6065 aluminum and the bottom bar is ACI-ASTM CA40 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
190
Elongation at Break, % 4.5 to 11
10
Fatigue Strength, MPa 96 to 110
460
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
76
Tensile Strength: Ultimate (UTS), MPa 310 to 400
910
Tensile Strength: Yield (Proof), MPa 270 to 380
860

Thermal Properties

Latent Heat of Fusion, J/g 400
280
Maximum Temperature: Mechanical, °C 180
750
Melting Completion (Liquidus), °C 640
1440
Melting Onset (Solidus), °C 590
1500
Specific Heat Capacity, J/kg-K 890
480
Thermal Conductivity, W/m-K 170
25
Thermal Expansion, µm/m-K 23
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 43
3.0
Electrical Conductivity: Equal Weight (Specific), % IACS 140
3.5

Otherwise Unclassified Properties

Base Metal Price, % relative 11
7.5
Density, g/cm3 2.8
7.7
Embodied Carbon, kg CO2/kg material 8.4
2.0
Embodied Energy, MJ/kg 150
28
Embodied Water, L/kg 1200
100

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 17 to 34
89
Resilience: Unit (Modulus of Resilience), kJ/m3 540 to 1040
1910
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 49
25
Strength to Weight: Axial, points 31 to 40
33
Strength to Weight: Bending, points 36 to 43
27
Thermal Diffusivity, mm2/s 67
6.7
Thermal Shock Resistance, points 14 to 18
33

Alloy Composition

Aluminum (Al), % 94.4 to 98.2
0
Bismuth (Bi), % 0.5 to 1.5
0
Carbon (C), % 0
0.2 to 0.4
Chromium (Cr), % 0 to 0.15
11.5 to 14
Copper (Cu), % 0.15 to 0.4
0
Iron (Fe), % 0 to 0.7
81.5 to 88.3
Lead (Pb), % 0 to 0.050
0
Magnesium (Mg), % 0.8 to 1.2
0
Manganese (Mn), % 0 to 0.15
0 to 1.0
Molybdenum (Mo), % 0
0 to 0.5
Nickel (Ni), % 0
0 to 1.0
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0.4 to 0.8
0 to 1.5
Sulfur (S), % 0
0 to 0.040
Titanium (Ti), % 0 to 0.1
0
Zinc (Zn), % 0 to 0.25
0
Zirconium (Zr), % 0 to 0.15
0
Residuals, % 0 to 0.15
0