MakeItFrom.com
Menu (ESC)

6065 Aluminum vs. ASTM A372 Grade F Steel

6065 aluminum belongs to the aluminum alloys classification, while ASTM A372 grade F steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 6065 aluminum and the bottom bar is ASTM A372 grade F steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
190
Elongation at Break, % 4.5 to 11
20 to 22
Fatigue Strength, MPa 96 to 110
310 to 380
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
73
Shear Strength, MPa 190 to 230
410 to 570
Tensile Strength: Ultimate (UTS), MPa 310 to 400
650 to 910
Tensile Strength: Yield (Proof), MPa 270 to 380
430 to 550

Thermal Properties

Latent Heat of Fusion, J/g 400
250
Maximum Temperature: Mechanical, °C 180
420
Melting Completion (Liquidus), °C 640
1460
Melting Onset (Solidus), °C 590
1420
Specific Heat Capacity, J/kg-K 890
470
Thermal Conductivity, W/m-K 170
44
Thermal Expansion, µm/m-K 23
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 43
7.3
Electrical Conductivity: Equal Weight (Specific), % IACS 140
8.4

Otherwise Unclassified Properties

Base Metal Price, % relative 11
2.4
Density, g/cm3 2.8
7.8
Embodied Carbon, kg CO2/kg material 8.4
1.5
Embodied Energy, MJ/kg 150
20
Embodied Water, L/kg 1200
51

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 17 to 34
130 to 160
Resilience: Unit (Modulus of Resilience), kJ/m3 540 to 1040
500 to 810
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 49
24
Strength to Weight: Axial, points 31 to 40
23 to 32
Strength to Weight: Bending, points 36 to 43
21 to 27
Thermal Diffusivity, mm2/s 67
12
Thermal Shock Resistance, points 14 to 18
19 to 27

Alloy Composition

Aluminum (Al), % 94.4 to 98.2
0
Bismuth (Bi), % 0.5 to 1.5
0
Carbon (C), % 0
0.3 to 0.4
Chromium (Cr), % 0 to 0.15
0.8 to 1.2
Copper (Cu), % 0.15 to 0.4
0
Iron (Fe), % 0 to 0.7
96.8 to 97.9
Lead (Pb), % 0 to 0.050
0
Magnesium (Mg), % 0.8 to 1.2
0
Manganese (Mn), % 0 to 0.15
0.7 to 1.0
Molybdenum (Mo), % 0
0.15 to 0.25
Phosphorus (P), % 0
0 to 0.015
Silicon (Si), % 0.4 to 0.8
0.15 to 0.35
Sulfur (S), % 0
0 to 0.010
Titanium (Ti), % 0 to 0.1
0
Zinc (Zn), % 0 to 0.25
0
Zirconium (Zr), % 0 to 0.15
0
Residuals, % 0 to 0.15
0

Comparable Variants