MakeItFrom.com
Menu (ESC)

6065 Aluminum vs. AWS E430Nb

6065 aluminum belongs to the aluminum alloys classification, while AWS E430Nb belongs to the iron alloys. There are 24 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 6065 aluminum and the bottom bar is AWS E430Nb.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
200
Elongation at Break, % 4.5 to 11
23
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
77
Tensile Strength: Ultimate (UTS), MPa 310 to 400
500

Thermal Properties

Latent Heat of Fusion, J/g 400
280
Melting Completion (Liquidus), °C 640
1450
Melting Onset (Solidus), °C 590
1410
Specific Heat Capacity, J/kg-K 890
480
Thermal Conductivity, W/m-K 170
24
Thermal Expansion, µm/m-K 23
14

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 43
2.6
Electrical Conductivity: Equal Weight (Specific), % IACS 140
3.0

Otherwise Unclassified Properties

Base Metal Price, % relative 11
15
Density, g/cm3 2.8
7.7
Embodied Carbon, kg CO2/kg material 8.4
3.1
Embodied Energy, MJ/kg 150
45
Embodied Water, L/kg 1200
120

Common Calculations

Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 49
25
Strength to Weight: Axial, points 31 to 40
18
Strength to Weight: Bending, points 36 to 43
18
Thermal Diffusivity, mm2/s 67
6.6
Thermal Shock Resistance, points 14 to 18
13

Alloy Composition

Aluminum (Al), % 94.4 to 98.2
0
Bismuth (Bi), % 0.5 to 1.5
0
Carbon (C), % 0
0 to 0.1
Chromium (Cr), % 0 to 0.15
15 to 18
Copper (Cu), % 0.15 to 0.4
0 to 0.75
Iron (Fe), % 0 to 0.7
76.2 to 84.5
Lead (Pb), % 0 to 0.050
0
Magnesium (Mg), % 0.8 to 1.2
0
Manganese (Mn), % 0 to 0.15
0 to 1.0
Molybdenum (Mo), % 0
0 to 0.75
Nickel (Ni), % 0
0 to 0.6
Niobium (Nb), % 0
0.5 to 1.5
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0.4 to 0.8
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.1
0
Zinc (Zn), % 0 to 0.25
0
Zirconium (Zr), % 0 to 0.15
0
Residuals, % 0 to 0.15
0