MakeItFrom.com
Menu (ESC)

6065 Aluminum vs. AWS E80C-B6

6065 aluminum belongs to the aluminum alloys classification, while AWS E80C-B6 belongs to the iron alloys. There are 27 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 6065 aluminum and the bottom bar is AWS E80C-B6.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
190
Elongation at Break, % 4.5 to 11
19
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
74
Tensile Strength: Ultimate (UTS), MPa 310 to 400
630
Tensile Strength: Yield (Proof), MPa 270 to 380
530

Thermal Properties

Latent Heat of Fusion, J/g 400
260
Melting Completion (Liquidus), °C 640
1450
Melting Onset (Solidus), °C 590
1410
Specific Heat Capacity, J/kg-K 890
470
Thermal Conductivity, W/m-K 170
39
Thermal Expansion, µm/m-K 23
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 43
8.2
Electrical Conductivity: Equal Weight (Specific), % IACS 140
9.5

Otherwise Unclassified Properties

Base Metal Price, % relative 11
4.7
Density, g/cm3 2.8
7.8
Embodied Carbon, kg CO2/kg material 8.4
1.8
Embodied Energy, MJ/kg 150
25
Embodied Water, L/kg 1200
71

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 17 to 34
120
Resilience: Unit (Modulus of Resilience), kJ/m3 540 to 1040
730
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 49
25
Strength to Weight: Axial, points 31 to 40
22
Strength to Weight: Bending, points 36 to 43
21
Thermal Diffusivity, mm2/s 67
11
Thermal Shock Resistance, points 14 to 18
18

Alloy Composition

Aluminum (Al), % 94.4 to 98.2
0
Bismuth (Bi), % 0.5 to 1.5
0
Carbon (C), % 0
0 to 0.1
Chromium (Cr), % 0 to 0.15
4.5 to 6.0
Copper (Cu), % 0.15 to 0.4
0 to 0.35
Iron (Fe), % 0 to 0.7
90.1 to 94.4
Lead (Pb), % 0 to 0.050
0
Magnesium (Mg), % 0.8 to 1.2
0
Manganese (Mn), % 0 to 0.15
0.4 to 1.0
Molybdenum (Mo), % 0
0.45 to 0.65
Nickel (Ni), % 0
0 to 0.6
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0.4 to 0.8
0.25 to 0.6
Sulfur (S), % 0
0 to 0.025
Titanium (Ti), % 0 to 0.1
0
Vanadium (V), % 0
0 to 0.030
Zinc (Zn), % 0 to 0.25
0
Zirconium (Zr), % 0 to 0.15
0
Residuals, % 0
0 to 0.5