MakeItFrom.com
Menu (ESC)

6065 Aluminum vs. AZ81A Magnesium

6065 aluminum belongs to the aluminum alloys classification, while AZ81A magnesium belongs to the magnesium alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is 6065 aluminum and the bottom bar is AZ81A magnesium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
46
Elongation at Break, % 4.5 to 11
3.0 to 8.8
Fatigue Strength, MPa 96 to 110
78 to 80
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
18
Shear Strength, MPa 190 to 230
91 to 130
Tensile Strength: Ultimate (UTS), MPa 310 to 400
160 to 240
Tensile Strength: Yield (Proof), MPa 270 to 380
84

Thermal Properties

Latent Heat of Fusion, J/g 400
350
Maximum Temperature: Mechanical, °C 180
130
Melting Completion (Liquidus), °C 640
600
Melting Onset (Solidus), °C 590
500
Specific Heat Capacity, J/kg-K 890
990
Thermal Conductivity, W/m-K 170
84
Thermal Expansion, µm/m-K 23
27

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 43
12
Electrical Conductivity: Equal Weight (Specific), % IACS 140
65

Otherwise Unclassified Properties

Base Metal Price, % relative 11
12
Density, g/cm3 2.8
1.7
Embodied Carbon, kg CO2/kg material 8.4
23
Embodied Energy, MJ/kg 150
160
Embodied Water, L/kg 1200
990

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 17 to 34
4.0 to 17
Resilience: Unit (Modulus of Resilience), kJ/m3 540 to 1040
77 to 78
Stiffness to Weight: Axial, points 14
15
Stiffness to Weight: Bending, points 49
70
Strength to Weight: Axial, points 31 to 40
26 to 39
Strength to Weight: Bending, points 36 to 43
38 to 50
Thermal Diffusivity, mm2/s 67
50
Thermal Shock Resistance, points 14 to 18
9.1 to 14

Alloy Composition

Aluminum (Al), % 94.4 to 98.2
7.0 to 8.1
Bismuth (Bi), % 0.5 to 1.5
0
Chromium (Cr), % 0 to 0.15
0
Copper (Cu), % 0.15 to 0.4
0 to 0.1
Iron (Fe), % 0 to 0.7
0
Lead (Pb), % 0 to 0.050
0
Magnesium (Mg), % 0.8 to 1.2
89.8 to 92.5
Manganese (Mn), % 0 to 0.15
0.13 to 0.35
Nickel (Ni), % 0
0 to 0.010
Silicon (Si), % 0.4 to 0.8
0 to 0.3
Titanium (Ti), % 0 to 0.1
0
Zinc (Zn), % 0 to 0.25
0.4 to 1.0
Zirconium (Zr), % 0 to 0.15
0
Residuals, % 0
0 to 0.3