MakeItFrom.com
Menu (ESC)

6065 Aluminum vs. EN 1.4567 Stainless Steel

6065 aluminum belongs to the aluminum alloys classification, while EN 1.4567 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 6065 aluminum and the bottom bar is EN 1.4567 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
190
Elongation at Break, % 4.5 to 11
22 to 51
Fatigue Strength, MPa 96 to 110
190 to 260
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
76
Shear Strength, MPa 190 to 230
390 to 490
Tensile Strength: Ultimate (UTS), MPa 310 to 400
550 to 780
Tensile Strength: Yield (Proof), MPa 270 to 380
200 to 390

Thermal Properties

Latent Heat of Fusion, J/g 400
290
Maximum Temperature: Mechanical, °C 180
930
Melting Completion (Liquidus), °C 640
1410
Melting Onset (Solidus), °C 590
1370
Specific Heat Capacity, J/kg-K 890
480
Thermal Conductivity, W/m-K 170
11
Thermal Expansion, µm/m-K 23
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 43
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 140
2.7

Otherwise Unclassified Properties

Base Metal Price, % relative 11
16
Density, g/cm3 2.8
7.8
Embodied Carbon, kg CO2/kg material 8.4
3.1
Embodied Energy, MJ/kg 150
43
Embodied Water, L/kg 1200
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 17 to 34
150 to 220
Resilience: Unit (Modulus of Resilience), kJ/m3 540 to 1040
100 to 400
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 49
25
Strength to Weight: Axial, points 31 to 40
19 to 27
Strength to Weight: Bending, points 36 to 43
19 to 24
Thermal Diffusivity, mm2/s 67
3.0
Thermal Shock Resistance, points 14 to 18
12 to 17

Alloy Composition

Aluminum (Al), % 94.4 to 98.2
0
Bismuth (Bi), % 0.5 to 1.5
0
Carbon (C), % 0
0 to 0.040
Chromium (Cr), % 0 to 0.15
17 to 19
Copper (Cu), % 0.15 to 0.4
3.0 to 4.0
Iron (Fe), % 0 to 0.7
63.3 to 71.5
Lead (Pb), % 0 to 0.050
0
Magnesium (Mg), % 0.8 to 1.2
0
Manganese (Mn), % 0 to 0.15
0 to 2.0
Nickel (Ni), % 0
8.5 to 10.5
Nitrogen (N), % 0
0 to 0.1
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0.4 to 0.8
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 0 to 0.1
0
Zinc (Zn), % 0 to 0.25
0
Zirconium (Zr), % 0 to 0.15
0
Residuals, % 0 to 0.15
0