MakeItFrom.com
Menu (ESC)

6065 Aluminum vs. EN 1.4807 Stainless Steel

6065 aluminum belongs to the aluminum alloys classification, while EN 1.4807 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 6065 aluminum and the bottom bar is EN 1.4807 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
190
Elongation at Break, % 4.5 to 11
4.5
Fatigue Strength, MPa 96 to 110
120
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
75
Tensile Strength: Ultimate (UTS), MPa 310 to 400
480
Tensile Strength: Yield (Proof), MPa 270 to 380
250

Thermal Properties

Latent Heat of Fusion, J/g 400
320
Maximum Temperature: Mechanical, °C 180
1000
Melting Completion (Liquidus), °C 640
1390
Melting Onset (Solidus), °C 590
1350
Specific Heat Capacity, J/kg-K 890
480
Thermal Conductivity, W/m-K 170
12
Thermal Expansion, µm/m-K 23
15

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 43
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 140
1.9

Otherwise Unclassified Properties

Base Metal Price, % relative 11
39
Density, g/cm3 2.8
8.0
Embodied Carbon, kg CO2/kg material 8.4
6.8
Embodied Energy, MJ/kg 150
97
Embodied Water, L/kg 1200
190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 17 to 34
18
Resilience: Unit (Modulus of Resilience), kJ/m3 540 to 1040
160
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 49
24
Strength to Weight: Axial, points 31 to 40
17
Strength to Weight: Bending, points 36 to 43
17
Thermal Diffusivity, mm2/s 67
3.2
Thermal Shock Resistance, points 14 to 18
12

Alloy Composition

Aluminum (Al), % 94.4 to 98.2
0
Bismuth (Bi), % 0.5 to 1.5
0
Carbon (C), % 0
0.3 to 0.5
Chromium (Cr), % 0 to 0.15
17 to 20
Copper (Cu), % 0.15 to 0.4
0
Iron (Fe), % 0 to 0.7
36.6 to 46.7
Lead (Pb), % 0 to 0.050
0
Magnesium (Mg), % 0.8 to 1.2
0
Manganese (Mn), % 0 to 0.15
0 to 2.0
Molybdenum (Mo), % 0
0 to 0.5
Nickel (Ni), % 0
34 to 36
Niobium (Nb), % 0
1.0 to 1.8
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0.4 to 0.8
1.0 to 2.5
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.1
0
Zinc (Zn), % 0 to 0.25
0
Zirconium (Zr), % 0 to 0.15
0
Residuals, % 0 to 0.15
0