MakeItFrom.com
Menu (ESC)

6065 Aluminum vs. EN 1.4962 Stainless Steel

6065 aluminum belongs to the aluminum alloys classification, while EN 1.4962 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 6065 aluminum and the bottom bar is EN 1.4962 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
200
Elongation at Break, % 4.5 to 11
22 to 34
Fatigue Strength, MPa 96 to 110
210 to 330
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
77
Shear Strength, MPa 190 to 230
420 to 440
Tensile Strength: Ultimate (UTS), MPa 310 to 400
630 to 690
Tensile Strength: Yield (Proof), MPa 270 to 380
260 to 490

Thermal Properties

Latent Heat of Fusion, J/g 400
280
Maximum Temperature: Mechanical, °C 180
910
Melting Completion (Liquidus), °C 640
1480
Melting Onset (Solidus), °C 590
1440
Specific Heat Capacity, J/kg-K 890
470
Thermal Conductivity, W/m-K 170
14
Thermal Expansion, µm/m-K 23
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 43
2.3
Electrical Conductivity: Equal Weight (Specific), % IACS 140
2.6

Otherwise Unclassified Properties

Base Metal Price, % relative 11
23
Density, g/cm3 2.8
8.1
Embodied Carbon, kg CO2/kg material 8.4
4.1
Embodied Energy, MJ/kg 150
59
Embodied Water, L/kg 1200
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 17 to 34
140 to 170
Resilience: Unit (Modulus of Resilience), kJ/m3 540 to 1040
170 to 610
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 49
24
Strength to Weight: Axial, points 31 to 40
21 to 24
Strength to Weight: Bending, points 36 to 43
20 to 21
Thermal Diffusivity, mm2/s 67
3.7
Thermal Shock Resistance, points 14 to 18
14 to 16

Alloy Composition

Aluminum (Al), % 94.4 to 98.2
0
Bismuth (Bi), % 0.5 to 1.5
0
Boron (B), % 0
0.0015 to 0.0060
Carbon (C), % 0
0.070 to 0.15
Chromium (Cr), % 0 to 0.15
15.5 to 17.5
Copper (Cu), % 0.15 to 0.4
0
Iron (Fe), % 0 to 0.7
62.1 to 69
Lead (Pb), % 0 to 0.050
0
Magnesium (Mg), % 0.8 to 1.2
0
Manganese (Mn), % 0 to 0.15
0 to 1.5
Nickel (Ni), % 0
12.5 to 14.5
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 0.4 to 0.8
0 to 0.5
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 0 to 0.1
0.4 to 0.7
Tungsten (W), % 0
2.5 to 3.0
Zinc (Zn), % 0 to 0.25
0
Zirconium (Zr), % 0 to 0.15
0
Residuals, % 0 to 0.15
0